scholarly journals Insights through Genetics of Halophilic Microorganisms and Their Viruses

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 388
Author(s):  
Rafael Montalvo-Rodríguez ◽  
Julie A. Maupin-Furlow

Halophilic microorganisms are found in all domains of life and thrive in hypersaline (high salt content) environments. These unusual microbes have been a subject of study for many years due to their interesting properties and physiology. Study of the genetics of halophilic microorganisms (from gene expression and regulation to genomics) has provided understanding into mechanisms of how life can occur at high salinity levels. Here we highlight recent studies that advance knowledge of biological function through study of the genetics of halophilic microorganisms and their viruses.

2018 ◽  
Vol 777 ◽  
pp. 554-558
Author(s):  
Vu Hai Dang ◽  
Manoon Masniyom

The effect of the high salinity water on the compressive strength of mine backfill was studied. Two types of salinity water: saturated and unsaturated brines were employed to mix with mine backfill materials, and the results were compared. The one with saturated brine had high salt content of 400 g/l while the other had 200 g/l. The results showed that compressive strength decreased with increasing salt content. The mine backfill with high salt content (saturated brine) exhibited the poorest compressive strength in which its strength decreased to approximately 50-70 % of the original strength gained from the backfill samples based on water without salt. Additionally, the optimal saline water solid ratio was 0.2.


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 122-127 ◽  
Author(s):  
D. Egamberdieva

The abilities of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 to colonise and survive in the rhizosphere of common bean under saline conditions were studied. Four salinity levels (5.0, 7.5, 10.0, and 12.5 dS/m) were maintained in the gnotobiotic system using NaCl salt. Results showed that with increasing salt content root-tip colonization of both bacterial strains was reduced. Both bacterial treatments used in the study increased root and/or shoot length compared to non-treated plants at each NaCl concentration tested, whereas shoot growth was not stimulated at high saline condition (12.5 dS/m). In conclusion, the results of this study indicated that P. extremorientalis TSAU20 and P. chlororaphis TSAU 13 have the ability to survive in ecologically stressed conditions, such as saline and nitrogen deficient soils, and may positively effect on plant growth of bean. High salinity inhibited their colonisation in the rhizosphere of bean and thus their stimulatory effect on plants was also reduced.


2005 ◽  
Vol 187 (6) ◽  
pp. 2038-2049 ◽  
Author(s):  
Gregory Jubelin ◽  
Anne Vianney ◽  
Christophe Beloin ◽  
Jean-Marc Ghigo ◽  
Jean-Claude Lazzaroni ◽  
...  

ABSTRACT Curli fibers could be described as a virulence factor able to confer adherence properties to both abiotic and eukaryotic surfaces. The ability to adapt rapidly to changing environmental conditions through signal transduction pathways is crucial for the growth and pathogenicity of bacteria. OmpR was shown to activate csgD expression, resulting in curli production. The CpxR regulator was shown to negatively affect curli gene expression when binding to its recognition site that overlaps the csgD OmpR-binding site. This study was undertaken to clarify how the interplay between the two regulatory proteins, OmpR and CpxR, can affect the transcription of the curli gene in response to variation of the medium osmolarity. Band-shift assays with purified CpxR proteins indicate that CpxR binds to the csgD promoter region at multiple sites that are ideally positioned to explain the csg repression activity of CpxR. To understand the physiological meaning of this in vitro molecular phenomenon, we analyzed the effects of an osmolarity shift on the two-component pathway CpxA/CpxR. We establish here that the Cpx pathway is activated at both transcriptional and posttranscriptional levels in response to a high osmolarity medium and that CpxR represses csgD expression in high-salt-content medium, resulting in low curli production. However, csgD repression in response to high sucrose content is not mediated by CpxR but by the global regulatory protein H-NS. Therefore, multiple systems (EnvZ/OmpR, Cpx, Rcs, and H-NS) appear to be involved in sensing environmental osmolarity, leading to sophisticated regulation of the curli genes.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


1991 ◽  
Vol 54 (6) ◽  
pp. 424-428 ◽  
Author(s):  
LAURA L. ZAIKA ◽  
ANNA H. KIM ◽  
LOUISE FORD

A partial factorial design study of the effect of NaNO2 (0, 100, 200, 1000 ppm) in combination with NaCl (0.5, 2.5, 4.0%), pH (7.5, 6.5, 5.5), and temperature (37, 28, 19°C) on growth of Shigella flexneri is reported. Experiments were done aerobically in brain-heart infusion medium, using an inoculum of 1 × 103 CFU/ml. Growth curves were fitted from plate count data by the Gompertz equation; exponential growth rates, lag times, generation times, and maximum populations were derived for all variable combinations. In the absence of nitrite, the organism grew well under all test conditions at 37 and 28°C but did not grow at 19°C at pH 5.5 nor at pH 7.5 with 4% NaCl. Nitrite did not affect growth in media of pH 7.5 at 37 and 28°C. At pH 6.5 growth was inhibited by 1000 ppm NaNO2. The organism failed to grow at 19°C at all nitrite levels in the presence of 2.5 or 4.0% NaCl. The inhibitory effect of nitrite was much greater in media of pH 5.5 and increased with increasing salt levels. More inhibition was apparent at 28 than at 37°C. While lack of growth was used as a paradigm of the effect of nitrite on S. flexneri, nitrite also increased the lag and generation times and decreased the exponential growth rate. Results indicated that NaNO2 in combinations with low temperature, low pH, and high salt content can effectively inhibit the growth of S. flexneri.


2003 ◽  
Vol 551 (2) ◽  
pp. 503-514 ◽  
Author(s):  
H. Liu ◽  
S. B. Hooper ◽  
A. Armugam ◽  
N. Dawson ◽  
T. Ferraro ◽  
...  

2004 ◽  
Vol 39 (9) ◽  
pp. 1379-1389 ◽  
Author(s):  
João Pedro de Magalhães ◽  
Florence Chainiaux ◽  
Françoise de Longueville ◽  
Véronique Mainfroid ◽  
Valérie Migeot ◽  
...  

2021 ◽  
Vol 25 (7) ◽  
pp. 8-12
Author(s):  
Z.G. Lamerdonov ◽  
T.Yu. Khashirova ◽  
S.A. Zhaboev ◽  
L.Zh. Nastueva ◽  
A.А. Shogenov ◽  
...  

The results of experimental studies of the local subsurface irrigation method in comparison with drip irrigation carried out in the laboratory, which showed water savings due to a decrease in evaporation from the soil surface by 10–15 percent are presented. The method of irrigation in closed greenhouse farms using water with a high salt content is described. The paper proposes new patented schematic solutions for protecting plants from frost and pests, describes a multifunctional engineering and reclamation system capable of performing various operations depending on the emerging problems during the growing season.


Sign in / Sign up

Export Citation Format

Share Document