scholarly journals Transcriptome Analysis of Skeletal Muscle Reveals Altered Proteolytic and Neuromuscular Junction Associated Gene Expressions in a Mouse Model of Cerebral Ischemic Stroke

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Peter J. Ferrandi ◽  
Mohammad Moshahid Khan ◽  
Hector G. Paez ◽  
Christopher R. Pitzer ◽  
Stephen E. Alway ◽  
...  

Stroke is a leading cause of mortality and long-term disability in patients worldwide. Skeletal muscle is the primary systemic target organ of stroke that induces muscle wasting and weakness, which predominantly contribute to functional disability in stroke patients. Currently, no pharmacological drug is available to treat post-stroke muscle morbidities as the mechanisms underlying post-stroke muscle wasting remain poorly understood. To understand the stroke-mediated molecular changes occurring at the transcriptional level in skeletal muscle, the gene expression profiles and enrichment pathways were explored in a mouse model of cerebral ischemic stroke via high-throughput RNA sequencing and extensive bioinformatic analyses. RNA-seq revealed that the elevated muscle atrophy observed in response to stroke was associated with the altered expression of genes involved in proteolysis, cell cycle, extracellular matrix remodeling, and the neuromuscular junction (NMJ). These data suggest that stroke primarily targets muscle protein degradation and NMJ pathway proteins to induce muscle atrophy. Collectively, we for the first time have found a novel genome-wide transcriptome signature of post-stroke skeletal muscle in mice. Our study will provide critical information to further elucidate specific gene(s) and pathway(s) that can be targeted to mitigate accountable for post-stroke muscle atrophy and related weakness.

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Junaith S Mohamed ◽  
Peter J Ferrandi ◽  
Paez G Hector ◽  
Christopher R Pitzer ◽  
Stephen E Alway

Stroke is a leading cause of mortality and long-term disability in patients worldwide. Skeletal muscle is the primary systemic target organ of stroke that severely induces muscle wasting and weakness, which contributes more to the long-term functional disability in stroke patients than any other disease. Currently, no approved pharmacological drug is available to treat stroke-induced muscle loss. Rehabilitative therapy is the only available option to improve muscle function in stroke patients. However, higher muscle fatigability and lower muscle strength from extensive muscle wasting in post-stroke patients provide poor rehabilitative outcomes. As a result, about two-thirds of stroke survivors persist in a state of insufficient recovery and experience physical disability that drastically reduces their health and quality of life. The major challenge in the drug discovery effort for treating post-stroke muscle wasting is the lack of our understanding of the molecular and/or cellular mechanisms that underlie the muscle wasting in stroke. To understand the molecular origin of stroke-induced muscle atrophy, gene expression profiling and associated biological pathway enrichment studies were performed in a mouse model of cerebral ischemic stroke using high-throughput RNA sequencing and extensive bioinformatic analyses. RNA-seq data revealed that the elevated atrophy in skeletal muscle observed in response to stroke was primairly associated with the altered expression of genes involved in the muscle protein degradation pathway. Further analysis of RNA-seq data identified Sirtuin1 (SirT1) as a critical protein that plays a significant role in regulating post-stroke muscle mass. SirT1 gain-of-function in skeletal muscle significantly reversed stroke-induced muscle atrophy via inhibiting the activation of the ubiquitin proteasomal pathway and restoring autophagy function. Collectively, this study identified suppression of SirT1as a novel mechanism by which stroke induces muscle atrophy.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Junaith Mohamed ◽  
Mohammad Khan ◽  
Peter Ferrandi ◽  
Hector Paez ◽  
Christopher Pitzer ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1719
Author(s):  
Cheng-Tien Wu ◽  
Man-Chih Chen ◽  
Shing-Hwa Liu ◽  
Ting-Hua Yang ◽  
Lin-Hwa Long ◽  
...  

Stroke, which is the second leading cause of mortality in the world, is urgently needed to explore the medical strategies for ischemic stroke treatment. Both icariin (ICA) and icaritin (ICT) are the major active flavonoids extracted from Herba epimedii that have been regarded as the neuroprotective agents in disease models. In this study, we aimed to investigate and compare the neuroprotective effects of ICA and ICT in a middle cerebral artery occlusion (MCAO) mouse model. Male ICR mice were pretreated with both ICA and ICT, which ameliorated body weight loss, neurological injury, infarct volume, and pathological change in acute ischemic stroke mice. Furthermore, administration of both ICA and ICT could also protect against neuronal cell apoptotic death, oxidative and nitrosative stress, lipid peroxidation, and extracellular matrix (ECM) accumulation in the brains. The neuroprotective effects of ICT are slightly better than that of ICA in acute cerebral ischemic stroke mice. These results suggest that pretreatment with both ICA and ICT improves the neuronal cell apoptosis and responses of oxidative/nitrosative stress and counteracts the ECM accumulation in the brains of acute cerebral ischemic stroke mice. Both ICA and ICT treatment may serve as a useful therapeutic strategy for acute ischemic stroke.


2019 ◽  
Vol 17 (3) ◽  
pp. 329-336
Author(s):  
Wang Jinli ◽  
Xu Fenfen ◽  
Zheng Yuan ◽  
Cheng Xu ◽  
Zhang Piaopiao ◽  
...  

Cardiovascular disease including cerebral ischemic stroke is the major complication that increases the morbidity and mortality in patients with diabetes mellitus as much as four times. It has been well established that irisin, with its ability to regulate glucose and lipid homeostasis as well as anti-inflammatory and anti-apoptotic properties, has been widely examined for its therapeutic potentials in managing metabolic disorders. However, the mechanism of irisin in the regulation of cerebral ischemic stroke remains unclear. Using PC12 cells as a model, we have shown that hypoxia/reoxygenation inhibits cell viability and increases lactic dehydrogenase. Irisin, in a dose-dependent manner, reversed these changes. The increase in inflammatory mediators (IL-1β, IL-6, and TNF-α) by hypoxia/reoxygenation was reversed by irisin. Furthermore, the cell apoptosis promoted by hypoxia/reoxygenation was also inhibited by irisin. Irisin suppressed TLR4/MyD88 signaling pathway leading to amelioration of inflammation and apoptosis in PC12 cells. Thus, inhibition of TLR4/MyD88 signaling pathway via irisin could be an important mechanism in the regulation of hypoxia/reoxygenation-induced inflammation and apoptosis in PC12 cells.


2021 ◽  
Vol 22 (15) ◽  
pp. 7828
Author(s):  
Justine M. Webster ◽  
Michael S. Sagmeister ◽  
Chloe G. Fenton ◽  
Alex P. Seabright ◽  
Yu-Chiang Lai ◽  
...  

Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11β-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11β-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11β-HSD1 global knock-out (11βKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11β-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11βKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11βKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11βKO compared to TNF-tg mice. In summary, 11β-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11β-HSD1 may offer a strategy to refine the safety of glucocorticoids.


Sign in / Sign up

Export Citation Format

Share Document