scholarly journals Global Deletion of 11β-HSD1 Prevents Muscle Wasting Associated with Glucocorticoid Therapy in Polyarthritis

2021 ◽  
Vol 22 (15) ◽  
pp. 7828
Author(s):  
Justine M. Webster ◽  
Michael S. Sagmeister ◽  
Chloe G. Fenton ◽  
Alex P. Seabright ◽  
Yu-Chiang Lai ◽  
...  

Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11β-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11β-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11β-HSD1 global knock-out (11βKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11β-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11βKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11βKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11βKO compared to TNF-tg mice. In summary, 11β-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11β-HSD1 may offer a strategy to refine the safety of glucocorticoids.

2020 ◽  
Vol 128 (1) ◽  
pp. 197-211 ◽  
Author(s):  
Koichiro Sumi ◽  
Kinya Ashida ◽  
Koichi Nakazato

Chronic inflammation (CI) can contribute to muscle atrophy and sarcopenia. Resistance exercise (RE) promotes increased and/or maintenance of skeletal muscle mass, but the effects of RE in the presence of CI are unclear. In this study, we developed a novel animal model of CI-induced muscle atrophy and examined the effect of acute or chronic RE by electrical stimulation. CI was induced in young female Lewis rats by injection with peptidoglycan-polysaccharide (PG-PS). Extracellular signal-regulated kinase (ERK), p70S6 kinase (p70S6K), 4E binding protein 1 (4E-BP1), Akt, and Forkhead box O1 (FOXO1) phosphorylation levels increased in gastrocnemius (Gas) muscle from normal rats subjected to acute RE. After acute RE in CI rats, increased levels of phosphorylated ERK, p70S6K, and 4E-BP1, but not Akt or FOXO1, were observed. Chronic RE significantly increased the Gas weight in the exercised limb relative to the nontrained opposing limb in CI rats. Dietary supplementation with anti-inflammatory agents, eicosapentaenoic/docosahexaenoic acid and α-lactalbumin attenuated CI-induced muscle atrophy in the untrained Gas and could promote RE-induced inhibition of atrophy in the trained Gas. In the trained leg, significant negative correlations ( r ≤ −0.80) were seen between Gas weights and CI indices, including proinflammatory cytokines and white blood cell count. These results indicated that the anabolic effects of RE are effective for preventing CI-induced muscle atrophy but are partially attenuated by inflammatory molecules. The findings also suggested that anti-inflammatory treatment together with RE is an effective intervention for muscle atrophy induced by CI. Taken together, we conclude that systemic inflammation levels are associated with skeletal muscle protein metabolism and plasticity. NEW & NOTEWORTHY This study developed a novel chronic inflammation (CI) model rat demonstrating that resistance exercise (RE) induced activation of protein synthesis signaling pathways and mitigated skeletal muscle atrophy. These anabolic effects were partially abrogated likely through attenuation of Akt/Forkhead box O1 axis activity. The degree of skeletal muscle atrophy was related to inflammatory responses. Dietary supplementation with anti-inflammatory agents could enhance the anabolic effect of RE. Our findings provide insight for development of countermeasures for CI-related muscle atrophy, especially secondary sarcopenia.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiongwei Yu ◽  
Wenjun Han ◽  
Changli Wang ◽  
Daming Sui ◽  
Jinjun Bian ◽  
...  

Hemin, an inducer of heme oxygenase-1 (HO-1), can enhance the activation of HO-1. HO-1 exhibits a variety of activities, such as anti-inflammatory, antioxidative, and antiapoptotic functions. The objective of this study was to investigate the effects of hemin on sepsis-induced skeletal muscle wasting and to explore the mechanisms by which hemin exerts its effects. Cecal ligation and perforation (CLP) was performed to create a sepsis mouse model. Mice were randomly divided into four groups: control, CLP, CLP plus group, and CLP-hemin-ZnPP (a HO-1 inhibitor). The weight of the solei from the mice was measured, and histopathology was examined. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the expression levels of HO-1 and atrogin-1. Furthermore, we investigated the antioxidative effects of HO-1 by detecting malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. CLP led to dramatic skeletal muscle weakness and atrophy, but pretreatment with hemin protected mice against CLP-mediated muscle atrophy. Hemin also induced high HO-1 expression, which resulted in suppressed proinflammatory cytokine and reactive oxygen species (ROS) production. The expression of MuRF1 and atrogin-1, two ubiquitin ligases of the ubiquitin-proteasome system- (UPS-) mediated proteolysis, was also inhibited by increased HO-1 levels. Hemin-mediated increases in HO-1 expression exert protective effects on sepsis-induced skeletal muscle atrophy at least partly by inhibiting the expression of proinflammatory cytokines, UPS-mediated proteolysis, and ROS activation. Therefore, hemin might be a new treatment target against sepsis-induced skeletal muscle atrophy.


2012 ◽  
Vol 8 (6) ◽  
pp. 315-320 ◽  
Author(s):  
Juan R. Velázquez ◽  
Lizeth Garibay-Martínez ◽  
Pedro Martínez-Tejada ◽  
Yelda A. Leal

2020 ◽  
pp. 32-44
Author(s):  
D. I. Trukhan ◽  
D. S. Ivanova ◽  
K. D. Belus

Rheumatoid arthritis is a frequent and one of the most severe immuno-inflammatory diseases in humans, which determines the great medical and socio-economic importance of this pathology. One of the priority problems of modern cardiac rheumatology is an increased risk of cardiovascular complications in rheumatoid arthritis. In patients with rheumatoid arthritis, traditional cardiovascular risk factors for cardiovascular diseases (metabolic syndrome, obesity, dyslipidemia, arterial hypertension, insulin resistance, diabetes mellitus, smoking and hypodynamia) and a genetic predisposition are expressed. Their specific features also have a certain effect: the “lipid paradox” and the “obesity paradox”. However, chronic inflammation as a key factor in the development of progression of atherosclerosis and endothelial dysfunction plays a leading role in morbidity and mortality from cardiovascular diseases in rheumatoid arthritis. This review discusses the effect of chronic inflammation and its mediators on traditional cardiovascular risk factors and its independent significance in the development of CVD. Drug therapy (non-steroidal anti-inflammatory drugs, glucocorticosteroids, basic anti-inflammatory drugs, genetically engineered biological drugs) of the underlying disease also has a definite effect on cardiovascular risk factors in patients with rheumatoid arthritis. A review of studies on this problem suggests a positive effect of pharmacological intervention in rheumatoid arthritis on cardiovascular risk factors, their reduction to a level comparable to the populations of patients not suffering from rheumatoid arthritis. The interaction of rheumatologists, cardiologists and first-contact doctors (therapist and general practitioner) in studying the mechanisms of the development of atherosclerosis in patients with rheumatoid arthritis will allow in real clinical practice to develop adequate methods for the timely diagnosis and prevention of cardiovascular diseases in patients with rheumatoid arthritis.


2020 ◽  
Vol 318 (2) ◽  
pp. R296-R310 ◽  
Author(s):  
Hélène N. Daou

Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.


2019 ◽  
Vol 10 (2) ◽  
pp. 1167-1178 ◽  
Author(s):  
Tao Tong ◽  
Minji Kim ◽  
Taesun Park

α-Ionone, a naturally occurring flavoring agent, attenuates muscle atrophy in HFD-fed mice via activation of cAMP signaling.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 529
Author(s):  
Seo-Young Kim ◽  
Ginnae Ahn ◽  
Hyun-Soo Kim ◽  
Jun-Geon Je ◽  
Kil-Nam Kim ◽  
...  

Inflammation affects various organs of the human body, including skeletal muscle. Phlorotannins are natural biologically active substances found in marine brown algae and exhibit anti-inflammatory activities. In this study, we focused on the effects of phlorotannins on anti-inflammatory activity and skeletal muscle cell proliferation activity to identify the protective effects on the inflammatory myopathy. First, the five species of marine brown algal extracts dramatically inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without toxicity at all the concentrations tested. Moreover, the extracts collected from Ishige okamurae (I. okamurae) significantly increased cell proliferation of C2C12 myoblasts compared to the non-treated cells with non-toxicity. In addition, as a result of finding a potential tumor necrosis factor (TNF)-α inhibitor that regulates the signaling pathway of muscle degradation in I. okamurae-derived natural bioactive compounds, Diphlorethohydroxycarmalol (DPHC) is favorably docked to the TNF-α with the lowest binding energy and docking interaction energy value. Moreover, DPHC down-regulated the mRNA expression level of pro-inflammatory cytokines and suppressed the muscle RING-finger protein (MuRF)-1 and Muscle Atrophy F-box (MAFbx)/Atrgoin-1, which are the key protein muscle atrophy via nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPKs) signaling pathways in TNF-α-stimulated C2C12 myotubes. Therefore, it is expected that DPHC isolated from IO would be developed as a TNF-α inhibitor against inflammatory myopathy.


2020 ◽  
Vol 21 (18) ◽  
pp. 6663 ◽  
Author(s):  
Dulce Peris-Moreno ◽  
Daniel Taillandier ◽  
Cécile Polge

The E3 ubiquitin ligase MuRF1/TRIM63 was identified 20 years ago and suspected to play important roles during skeletal muscle atrophy. Since then, numerous studies have been conducted to decipher the roles, molecular mechanisms and regulation of this enzyme. This revealed that MuRF1 is an important player in the skeletal muscle atrophy process occurring during catabolic states, making MuRF1 a prime candidate for pharmacological treatments against muscle wasting. Indeed, muscle wasting is an associated event of several diseases (e.g., cancer, sepsis, diabetes, renal failure, etc.) and negatively impacts the prognosis of patients, which has stimulated the search for MuRF1 inhibitory molecules. However, studies on MuRF1 cardiac functions revealed that MuRF1 is also cardioprotective, revealing a yin and yang role of MuRF1, being detrimental in skeletal muscle and beneficial in the heart. This review discusses data obtained on MuRF1, both in skeletal and cardiac muscles, over the past 20 years, regarding the structure, the regulation, the location and the different functions identified, and the first inhibitors reported, and aim to draw the picture of what is known about MuRF1. The review also discusses important MuRF1 characteristics to consider for the design of future drugs to maintain skeletal muscle mass in patients with different pathologies.


2012 ◽  
Vol 8 (6) ◽  
pp. 315-320
Author(s):  
Juan R. Velázquez ◽  
Lizeth Garibay-Martínez ◽  
Pedro Martínez-Tejada ◽  
Yelda A. Leal

2010 ◽  
Vol 298 (1) ◽  
pp. C38-C45 ◽  
Author(s):  
Sarah M. Senf ◽  
Stephen L. Dodd ◽  
Andrew R. Judge

The purpose of the current study was to determine whether heat shock protein 70 (Hsp70) directly regulates forkhead box O (FOXO) signaling in skeletal muscle. This aim stems from previous work demonstrating that Hsp70 overexpression inhibits disuse-induced FOXO transactivation and prevents muscle fiber atrophy. However, although FOXO is sufficient to cause muscle wasting, no data currently exist on the requirement of FOXO signaling in the progression of physiological muscle wasting, in vivo. In the current study we show that specific inhibition of FOXO, via expression of a dominant-negative FOXO3a, in rat soleus muscle during disuse prevented >40% of muscle fiber atrophy, demonstrating that FOXO signaling is required for disuse muscle atrophy. Subsequent experiments determined whether Hsp70 directly regulates FOXO3a signaling when independently activated in skeletal muscle, via transfection of FOXO3a. We show that Hsp70 inhibits FOXO3a-dependent transcription in a gene-specific manner. Specifically, Hsp70 inhibited FOXO3a-induced promoter activation of atrogin-1, but not MuRF1. Further studies showed that a FOXO3a DNA-binding mutant can activate MuRF1, but not atrogin-1, suggesting that FOXO3a activates these two genes through differential mechanisms. In summary, FOXO signaling is required for physiological muscle atrophy and is directly inhibited by Hsp70.


Sign in / Sign up

Export Citation Format

Share Document