scholarly journals The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1459
Author(s):  
Praval Khanal ◽  
Lingxiao He ◽  
Adam J. Herbert ◽  
Georgina K. Stebbings ◽  
Gladys L. Onambele-Pearson ◽  
...  

There is a scarcity of studies that have investigated the role of multiple single nucleotide polymorphisms (SNPs) on a range of muscle phenotypes in an elderly population. The present study investigated the possible association of 24 SNPs with skeletal muscle phenotypes in 307 elderly Caucasian women (aged 60–91 years, 66.3 ± 11.3 kg). Skeletal muscle phenotypes included biceps brachii thickness, vastus lateralis cross-sectional areas, maximal hand grip strength, isometric knee extension and elbow flexion torque. Genotyping for 24 SNPs, chosen on their skeletal muscle structural or functional links, was conducted on DNA extracted from blood or saliva. Of the 24 SNPs, 10 were associated with at least one skeletal muscle phenotype. HIF1A rs11549465 was associated with three skeletal muscle phenotypes and PTK2 rs7460 and ACVR1B rs10783485 were each associated with two phenotypes. PTK2 rs7843014, COL1A1 rs1800012, CNTF rs1800169, NOS3 rs1799983, MSTN rs1805086, TRHR rs7832552 and FTO rs9939609 were each associated with one. Elderly women possessing favourable genotypes were 3.6–13.2% stronger and had 4.6–14.7% larger muscle than those with less favourable genotypes. These associations, together with future work involving a broader range of SNPs, may help identify individuals at particular risk of an age-associated loss of independence.

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Prisilia M. Pinontoan ◽  
Sylvia R. Marunduh ◽  
Herlina I. S. Wungouw

Abstract: The aim of this study was to find out the profile of muscle strength on elderly at BPLU Senja Cerah Paniki Bawah. This was a descriptive study with cross sectional design. There were 26 respondents who met the inclusion criteria, consisted of 10 elderly men and 16 elderly women. Respondents were selected by using purposive sampling method. The measurements of the muscle strength were done by using 1 RM method while doing elbow flexion, elbow extension, shoulder flexion, shoulder extension, shoulder abduction, knee flexion, knee extension and dorsoflexion. Data were analyzed manually and computerized then presented in tabular form. The result shows that the average muscle strength in elderly men were greater than women and the average muscle strength of respondents that were included in the age group 60-79 years old were greater than those in 80-99 years.Keywords: muscle strength, elderly.1 RMAbstrak: Tujuan dari penelitian ini yaitu untuk mengetahui gambaran kekuatan otot pada Lansia di BPLU Senja Cerah Paniki Bawah. Penelitian ini merupakan peneliltian deskriptif dengan rancangan potong lintang. Responden yang memenuhi kriteria inklusi terdiri dari 26 orang yang terdiri dari 10 orang laki-laki dan 16 orang perempuan. Sampel dipilih menggunakan cara purposive sampling. Kekuatan otot pada lansia diukur dengan menggunakan metode 1 RM yang diukur pada gerakan fleksi siku, ekstensi siku, fleksi bahu, ekstensi bahu, abduksi bahu, fleksi lutut, ekstensi lutut serta dorsofleksi. Data yang sudah didapatkan kemudian dikumpul dan diolah secara manual dan komputerisasi serta disajikan dalam bentuk tabel. Hasil penelitian menunjukkan rerata kekuatan otot responden laki-laki lebih besar dibanding perempuan dan rerata kekuatan responden yang termasuk dalam kelompok umur 60-79 tahun lebih besar dibanding kelompok umur 80-99 tahun.Kata kunci: kekuatan otot, lansia, 1 RM.


Author(s):  
Conrado Laett ◽  
Ubiratã Gavilão ◽  
Jéssica do Rio ◽  
Victor Cossich ◽  
Carlos Gomes de Oliveira

ABSTRACT We aimed to assess upper and lower limbs explosive strength, and its correlation with biceps brachii (BB) and vastus lateralis (VL) architecture. Absolute and maximum torque normalized rate of torque development (RTD) were measured from isometric elbow flexion (EF) and knee extension (KE). BB and VL architectures were assessed by ultrasound. Absolute RTD of KE was higher (129–272%), although normalized RTD was higher in EF (80-21%). The absolute RTD was correlated to muscle thickness only in the BB (r=.39-46). No relationship was found between muscle architecture and normalized RTD. In conclusion, the higher RTD from KE seems to be due to their greater strength. Only the muscle architecture could not explain the differences found in the RTD.


1992 ◽  
Vol 73 (3) ◽  
pp. 812-816 ◽  
Author(s):  
A. Aniansson ◽  
G. Grimby ◽  
M. Hedberg

Muscle strength and muscle morphology have been studied three times during a period of 11 yr in nine elderly men. On the last occasion the average age was 80.4 (range 79–82) yr. Body cell mass decreased by 6% and muscle strength for knee extension, measured by means of isometric and concentric isokinetic (30–60 degrees/s) recordings, declined by 25–35% over the 11-yr period. Between 76 and 80 yr of age only the isokinetic strength for 30 degrees/s decreased significantly. Muscle fiber composition in the vastus lateralis did not change between 69 and 76 yr of age, but there was a significant reduction in the proportion of type IIb fibers from 76 to 80 yr. The decrease in type II fiber areas was not significant between 69 and 76 yr of age (as in a larger sample from the same population), but a significant increase in both type I and type II fiber areas was recorded from 76 to 80 yr of age and biceps brachii showed similar tendencies. In the same period, the enzymatic activities of myokinase and lactate dehydrogenase subsided in the vastus lateralis, but there was no change for triose phosphate dehydrogenase, 3-hydroxy-CoA-dehydrogenase, and citrate synthase. The muscle fiber hypertrophy in this group of elderly men with maintained physical activity between 76 and 80 yr of age is interpreted as a compensatory adaptation for the loss of motor units. In addition, the adaptation with respect to oxidative capacities seems to be maintained at this age.


2019 ◽  
Vol 44 (8) ◽  
pp. 827-833 ◽  
Author(s):  
Tommy R. Lundberg ◽  
Maria T. García-Gutiérrez ◽  
Mirko Mandić ◽  
Mats Lilja ◽  
Rodrigo Fernandez-Gonzalo

This study compared the effects of the most frequently employed protocols of flywheel (FW) versus weight-stack (WS) resistance exercise (RE) on regional and muscle-specific adaptations of the knee extensors. Sixteen men (n = 8) and women (n = 8) performed 8 weeks (2–3 days/week) of knee extension RE employing FW technology on 1 leg (4 × 7 repetitions), while the contralateral leg performed regular WS training (4 × 8–12 repetitions). Maximal strength (1-repetition maximum (1RM) in WS) and peak FW power were determined before and after training for both legs. Partial muscle volume of vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF) were measured using magnetic resonance imaging. Additionally, quadriceps cross-sectional area was assessed at a proximal and a distal site. There were no differences (P > 0.05) between FW versus WS in muscle hypertrophy of the quadriceps femoris (8% vs. 9%), VL (10% vs. 11%), VM (6% vs. 8%), VI (5% vs. 5%), or RF (17% vs. 17%). Muscle hypertrophy tended (P = 0.09) to be greater at the distal compared with the proximal site, but there was no interaction with exercise method. Increases in 1RM and FW peak power were similar across legs, yet the increase in 1RM was greater in men (31%) than in women (20%). These findings suggest that FW and WS training induces comparable muscle-specific hypertrophy of the knee extensors. Given that these robust muscular adaptations were brought about with markedly fewer repetitions in the FW compared with WS, it seems FW training can be recommended as a particularly time-efficient exercise paradigm.


Author(s):  
Eric C. Leszczynski ◽  
Christopher Kuenze ◽  
Brett Brazier ◽  
Joseph Visker ◽  
David P. Ferguson

AbstractQuadriceps muscle weakness is a commonly reported issue post anterior cruciate ligament reconstruction (ACLR), with minimal information related to skeletal muscle morphology following surgery. The purpose is to examine the morphological and functional differences in the vastus lateralis muscle from patient's ACLR and contralateral leg. Three physically active ACLR participants were recruited and secured to a dynamometer to perform maximal voluntary isometric knee extension contractions (MVIC) of the ACLR and contralateral limb. Muscle biopsies of the ACLR and contralateral vastus lateralis were performed, then sectioned, and stained for myosin isoforms to determine fiber type. Confocal images were acquired, and ImageJ software was used to determine the fiber type and cross-sectional area (CSA). There was a significant reduction in CSA of the type IIa and type IIx muscle fiber cells between healthy (IIa: 7,718 ± 1,295 µm2; IIx; 5,800 ± 601 µm2) and ACLR legs (IIa: 4,139 ± 709 µm2; IIx: 3,708 ± 618 µm2) (p < 0.05), while there was no significant difference in knee extension MVIC torque between legs (healthy limb: 2.42 ± 0.52 Nm/kg; ACLR limb: 2.05 ± 0.24 Nm/kg, p = 0.11). The reduction in the cross-sectional area of the ACLR type II fibers could impair function and increase secondary injury risk.


2003 ◽  
Vol 28 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Chris M. Gregory ◽  
Krista Vandenborne ◽  
Michael J. Castro ◽  
G. Alton Dudley

Results of studies of rodent skeletal muscle plasticity are often extrapolated to humans. However, responses to "disuse" may be species specific, in part because of different inherent properties of anatomically similar muscles. Thus, this study quantified human and rat m. vastus lateralis (VL) fiber adaptations to 11 weeks of spinal cord injury (SCI). The m. VL was taken from 8 young (54 d) male Charles River rats after T-9 laminectomy (n = 4) or sham surgery (n = 4). In addition, the m. VL was biopsied in 7 able-bodied and in 7 SCI humans (31.3 ± 4.7 years, mean ± SE). Samples were sectioned and fibers were analyzed for type (I, IIa, IIb/x), cross-sectional area (CSA), succinate dehydrogenase (SDH), α-glycerol-phosphate dehydrogenase (GPDH), and actomyosin adenosine triphosphatase (qATPase) activities. Rat fibers had 1.5- to 2-fold greater SDH and GPDH activities while their fibers were 60% the size of those in humans. The most striking differences, however, were the absence of slow fibers in the rat and its four-fold greater proportion of IIb/x fibers (80% vs. 16% of the CSA) compared to humans. SCI decreased SDH activity more in rats whereas atrophy and IIa to IIb/x fiber shift occurred to a greater extent in humans. It is suggested that the rat is a reasonable model for studying the predominant response to SCI, atrophy. However, its high proportion of IIb/x fibers limits evaluation of the mechanical consequences of shifting to "faster" contractile machinery after SCI. Key words: enzyme, fiber type, disuse, biopsy


2021 ◽  
Author(s):  
Sue M Ronaldson ◽  
George D Stephenson ◽  
Stewart I Head

The single skinned muscle fibre technique was used to investigate Ca2+- and Sr2+- activation properties of skeletal muscle fibres from elderly women (66-90 years). Muscle biopsies were obtained from the vastus lateralis muscle. Three populations of muscle fibres were identified according to their specific Sr2+- activation properties: slow-twitch (type I) fast-twitch (type II) and hybrid (type I/II) fibres. All three fibre types were sampled from the biopsies of 66 to 72 years old women, but the muscle biopsies of women older than 80 years yielded only slow-twitch (type I) fibres. The proportion of hybrid fibres in the vastus lateralis muscle of women of circa 70 years of age (24%) was several-fold greater than in the same muscle of adults (<10%), suggesting that muscle remodelling occurs around this age. There were no differences between the Ca2+- and Sr2+- activation properties of slow-twitch fibres from the two groups of elderly women, but there were differences compared with muscle fibres from adults with respect to sensitivity to Ca2+, steepness of the activation curves, and characteristics of the fibre-type dependent phenomenon of spontaneous force oscillations (SOMO) occurring at sub-maximal levels of activation. The maximal Ca2+ activated specific force from all the fibres collected from the seven old women use in the present study was significantly lower by 20% than in the same muscle of adults. Taken together these results show there are qualitative and quantitative changes in the activation properties of the contractile apparatus of muscle fibres from the vastus lateralis muscle of women with advancing age, and that these changes need to be considered when explaining observed changes in womens mobility with aging.


2020 ◽  
Vol 32 (3) ◽  
pp. 157-164
Author(s):  
Trent J. Herda ◽  
Philip M. Gallagher ◽  
Jonathan D. Miller ◽  
Matthew P. Bubak ◽  
Mandy E. Parra

Background: Skeletal muscle is overlooked in the realm of insulin resistance in children who are overweight and obese despite the fact that it accounts for the most glucose disposal. Objectives: Therefore, this study examined fasted glucose levels and muscle cross-sectional area and echo intensity (EI) via ultrasound images of the first dorsal interosseous, vastus lateralis, and rectus femoris in children who are normal weight and overweight and obese aged 8–10 years. Methods: In total, 13 males (age = 9.0 [0.7] y) and 7 females (age = 9.0 [0.8] y) volunteered for this study. Independent samples t tests and effect sizes (ESs) were used to examine potential differences in skeletal muscle composition and glucose concentrations. Results: There were no significant differences between groups for glucose concentration (P = .07, ES = 0.86); however, the children who were overweight and obese had significantly greater EI (P < .01, ES = 0.98–1.63) for the first dorsal interosseous, vastus lateralis, and rectus femoris and lower cross-sectional area when normalized to EI when collapsed across muscles (P < .04, ES = 0.92). Glucose concentrations correlated with EI and cross-sectional area/EI for the vastus lateralis (r = .514 to −.593) and rectus femoris (r = .551 to −.513), but not the first dorsal interosseous. Discussion: There is evidence that adiposity-related pathways leading to insulin resistance and skeletal muscle degradation are active in young children who are overweight and obese.


2020 ◽  
Vol 45 (4) ◽  
pp. 368-375 ◽  
Author(s):  
Joshua P. Nederveen ◽  
George Ibrahim ◽  
Stephen A. Fortino ◽  
Tim Snijders ◽  
Dinesh Kumbhare ◽  
...  

The percutaneous muscle biopsy procedure is an invaluable tool for characterizing skeletal muscle and capillarization. Little is known about methodological or biological variation stemming from the technique in heterogeneous muscle. Five muscle biopsies were taken from the vastus lateralis of a group of young men (n = 29, 22 ± 1 years) over a 96-h period. We investigated the repeatability of fibre distribution, indices of muscle capillarization and perfusion, and myofibre characteristics. No differences between the biopsies were reported in myofibre type distribution, cross-sectional area (CSA), and perimeter. Capillary-to-fibre perimeter exchange index and individual capillary-fibre contacts were unchanged with respect to the location of the muscle biopsy and index of capillarization. The variability in the sampling distribution of fibre type specific muscle CSA increased when fewer than 150 muscle fibres were quantified. Variability in fibre type distribution increased when fewer than 150 muscle fibres were quantified. Myofibre characteristics and indices of capillarization are largely consistent throughout the vastus lateralis when assessed via the skeletal muscle biopsy technique. Novelty Markers of muscle capillarization and perfusion were unchanged across multiple sites of the human vastus lateralis. Myofibre characteristics such as muscle cross-sectional area, perimeter, and fibre type distribution were also unchanged. Variation of muscle CSA was higher when fewer than 150 muscle fibres were quantified.


2017 ◽  
Vol 20 (5) ◽  
pp. 660-669 ◽  
Author(s):  
Carine Fernandes de Souza ◽  
Mariana Carmem Apolinário Vieira ◽  
Rafaela Andrade do Nascimento ◽  
Mayle Andrade Moreira ◽  
Saionara Maria Aires da Câmara ◽  
...  

Abstract Objective: to analyze the relationship between handgrip strength and lower limb strength and the amount of segmental skeletal muscle mass in middle-aged and elderly women. Methods: an observational, cross-sectional, observational study of 540 women aged between 40 and 80 years in the cities of Parnamirim and Santa Cruz, Rio Grande do Norte, was performed. Sociodemographic data, anthropometric measurements, handgrip dynamometry, knee flexors and extensors of the dominant limbs, as well as the segmental muscle mass of the limbs were evaluated. Data were analyzed using Student's t-Test, Chi-square test, Effect Size and Pearson's Correlation (CI 95%). Results: there were statistically significant weak and moderate correlations between handgrip strength and upper limb muscle mass, knee flexion strength and lower limb muscle mass, and between knee extension strength and lower limb muscle mass for the age groups 40-59 years and 60 years or more (p<0.05). Conclusions: muscle strength correlates with skeletal muscle mass. It could therefore be an indicator of the decrease in strength. It is not the only such indicator, however, as correlations were weak and moderate, which suggests the need for more studies on this theme to elucidate which components may also influence the loss of strength with aging.


Sign in / Sign up

Export Citation Format

Share Document