scholarly journals Long Noncoding RNA HOXA11-AS and Transcription Factor HOXB13 Modulate the Expression of Bone Metastasis-Related Genes in Prostate Cancer

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 182
Author(s):  
Aya Misawa ◽  
Yukihiro Kondo ◽  
Hiroyuki Takei ◽  
Toshihiro Takizawa

Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression, which play fundamental roles in cancer development. In this study, we found that homeobox A11 antisense RNA (HOXA11-AS), a highly expressed lncRNA in cell lines derived from prostate cancer bone metastases, promoted the cell invasion and proliferation of PC3 prostate cancer cells. Transcription factor homeobox B13 (HOXB13) was identified as an upstream regulator of HOXA11-AS.HOXA11-AS regulated bone metastasis-associated C-C motif chemokine ligand 2 (CCL2)/C-C chemokine receptor type 2 (CCR2) signaling in both PC3 prostate cancer cells and SaOS2 osteoblastic cells. The HOXB13/HOXA11-AS axis also regulated integrin subunits (ITGAV and ITGB1) specific to prostate cancer bone metastasis. HOXB13, in combination with HOXA11-AS, directly regulated the integrin-binding sialoprotein (IBSP) promoter. Furthermore, conditioned medium containing HOXA11-AS secreted from PC3 cells could induce the expression of CCL2 and IBSP in SaOS2 osteoblastic cells. These results suggest that prostate cancer HOXA11-AS and HOXB13 promote metastasis by regulation of CCL2/CCR2 cytokine and integrin signaling in autocrine and paracrine manners.

2020 ◽  
Author(s):  
Bongjun Kim ◽  
Haemin Kim ◽  
Suhan Jung ◽  
Jun-Oh Kwon ◽  
Min-Kyong Song ◽  
...  

Abstract Background: Prostate cancers frequently metastasize to bone, where the best microenvironment for distant colonization is provided. Since osteotropic metastasis of prostate cancer is a critical determinant of patients’ survival, searches for preventive measures are ongoing in the field. Therefore, it is important to dissect the mechanisms of each step of bone metastasis, including the epithelial-mesenchymal transition (EMT) and cross-talk between metastatic niches and cancer cells.Methods: In this study, we established a highly bone-metastatic subline of human prostate cancer cells by selecting bone-homing population of PC3 cells after cardiac injection of eight-week-old male BALB/c-nude mice. Then we assessed the proliferation, EMT, and migration properties of the subline (mtPC3) cells in comparison with the parental PC3 cells. To investigate the role of S100A4, we performed gene knock-down by lentiviral transduction, or treated cells with recombinant S100A4 protein or a S100A4-neutralizing antibody. The effect of cancer cells on osteoclastogenesis was evaluated after treatment of pre-osteoclasts with conditioned medium (CM) from cancer cells.Results: The mtPC3 cells secreted a markedly high level of S100A4 protein and showed elevated cell proliferation and mesenchymal properties. The increased proliferation and EMT of mtPC3 cells was inhibited by S100A4 knock-down, but was not affected by exogenous S100A4. Furthermore, S100A4 released from mtPC3 cells stimulated osteoclast development via the cell surface receptor RAGE. Down-regulation or neutralization of S100A4 in the CM of mtPC3 cells attenuated cancer-induced osteoclastogenesis. Conclusion: Altogether, our results suggest that intracellular S100A4 promotes cell proliferation and EMT in tumor cells, and that secreted S100A4 activates osteoclastogenesis, contributing to osteolytic bone metastasis. Thus, S100A4 upregulation in cancer cells highly metastatic to bone might be a key element in regulating bone metastasis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bongjun Kim ◽  
Suhan Jung ◽  
Haemin Kim ◽  
Jun-Oh Kwon ◽  
Min-Kyoung Song ◽  
...  

Abstract Background Prostate cancers frequently metastasize to bone, where the best microenvironment for distant colonization is provided. Since osteotropic metastasis of prostate cancer is a critical determinant of patients’ survival, searches for preventive measures are ongoing in the field. Therefore, it is important to dissect the mechanisms of each step of bone metastasis, including the epithelial-mesenchymal transition (EMT) and cross-talk between metastatic niches and cancer cells. Methods In this study, we established a highly bone-metastatic subline of human prostate cancer cells by selecting bone-homing population of PC3 cells after cardiac injection of eight-week-old male BALB/c-nude mice. Then we assessed the proliferation, EMT characteristics, and migration properties of the subline (mtPC3) cells in comparison with the parental PC3 cells. To investigate the role of S100A4, we performed gene knock-down by lentiviral transduction, or treated cells with recombinant S100A4 protein or a S100A4-neutralizing antibody. The effect of cancer cells on osteoclastogenesis was evaluated after treatment of pre-osteoclasts with conditioned medium (CM) from cancer cells. Results The mtPC3 cells secreted a markedly high level of S100A4 protein and showed elevated cell proliferation and mesenchymal properties. The increased proliferation and EMT traits of mtPC3 cells was inhibited by S100A4 knock-down, but was not affected by exogenous S100A4. Furthermore, S100A4 released from mtPC3 cells stimulated osteoclast development via the cell surface receptor RAGE. Down-regulation or neutralization of S100A4 in the CM of mtPC3 cells attenuated cancer-induced osteoclastogenesis. Conclusion Altogether, our results suggest that intracellular S100A4 promotes cell proliferation and EMT characteristics in tumor cells, and that secreted S100A4 activates osteoclastogenesis, contributing to osteolytic bone metastasis. Thus, S100A4 upregulation in cancer cells highly metastatic to bone might be a key element in regulating bone metastasis.


2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.


Andrologia ◽  
2020 ◽  
Author(s):  
Lei Wang ◽  
Longning Wang ◽  
Qingfen Wang ◽  
Bahman Yosefi ◽  
Sen Wei ◽  
...  

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Navatha Shree Polavaram ◽  
Samikshan Dutta ◽  
Ridwan Islam ◽  
Arup K. Bag ◽  
Sohini Roy ◽  
...  

AbstractUnderstanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.


2010 ◽  
Vol 9 (1) ◽  
pp. 258 ◽  
Author(s):  
Sanjeev K Baniwal ◽  
Omar Khalid ◽  
Yankel Gabet ◽  
Ruchir R Shah ◽  
Daniel J Purcell ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48433-48437 ◽  
Author(s):  
Krishnamoorthy Lalitha ◽  
Preethi Jenifer ◽  
Y. Siva Prasad ◽  
Kumarasamy Muthusamy ◽  
George John ◽  
...  

Herein, self-assembled π-conjugated systems derived from renewable resource are reported as a probe for intra-cellular imaging and an anti-proliferative agent for PC3 cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zongliang Lu ◽  
Wei Song ◽  
Yaowen Zhang ◽  
Changpeng Wu ◽  
Mingxing Zhu ◽  
...  

Castration-resistant (androgen-independent) and PTEN-deficient prostate cancer is a challenge in clinical practice. Sorafenib has been recommended for the treatment of this type of cancer, but is associated with several adverse effects. Platycodin D (PD) is a triterpene saponin with demonstrated anti-cancer effects and a good safety profile. Previous studies have indicated that PC3 cells (PTEN -/-, AR -/-) are sensitive to PD, suggesting that it may also be a useful treatment for castration-resistance prostate cancer. We herein investigated the effects of combining PD with sorafenib to treat PTEN-deficient prostate cancer cells. Our data show that PD promotes sorafenib-induced apoptosis and cell cycle arrest in PC3 cells. Of interest, PD only promoted the anti-cancer effects of sorafenib in Akt-positive and PTEN-negative prostate cancer cells. Mechanistic studies revealed that PD promoted p-Akt ubiquitination by increasing the p-Akt level. PD also increased the protein and mRNA expression of FOXO3a, the downstream target of Akt. Meanwhile, PD promoted the activity of FOXO3a and increased the protein expression of Fasl, Bim and TRAIL. Interestingly, when FOXO3a expression was inhibited, the antitumor effects of both PD and sorafenib were individually inhibited, and the more potent effects of the combination treatment were inhibited. Thus, the combination of PD and sorafenib may exert potent anti-cancer effects specifically via FOXO3a. The use of Akt inhibitors or FOXO3a agonists, such as PD, may represent a promising approach for the treatment of androgen-independent and PTEN-deficient prostate cancer.


Epigenomics ◽  
2021 ◽  
Author(s):  
Chi Liu ◽  
Ping Lin ◽  
Jiabin Zhao ◽  
Hui Xie ◽  
Rou Li ◽  
...  

Aim: To explore the role and mechanism of long noncoding RNA AC245100.4 and NR4A3 in prostate cancer (PCa). Methods: RNA-sequencing analysis was used to detect the downstream genes of AC245100.4. A series of gain- and loss-of-function approaches were used to investigate the roles of AC245100.4 and NR4A3. RNA immunoprecipitation was performed to examine the interaction between AC245100.4 and STAT3. Results: AC245100.4 was significantly upregulated in PCa cells and tissues. Knockdown of AC21500.4 significantly inhibited the tumorigenesis of PCa cells. Mechanistically, AC245100.4 deregulated the transcription of NR4A3 via increasing p-STAT3, which acted as a transcriptional repressor of NR4A3. Conclusion: Knockdown of lncRNA AC245100.4 inhibits the tumorigenesis of PCa cells via the STAT3/ NR4A3 axis.


Sign in / Sign up

Export Citation Format

Share Document