scholarly journals The Role of Wild-Type RAS in Oncogenic RAS Transformation

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 662
Author(s):  
Erin Sheffels ◽  
Robert L. Kortum

The RAS family of oncogenes (HRAS, NRAS, and KRAS) are among the most frequently mutated protein families in cancers. RAS-mutated tumors were originally thought to proliferate independently of upstream signaling inputs, but we now know that non-mutated wild-type (WT) RAS proteins play an important role in modulating downstream effector signaling and driving therapeutic resistance in RAS-mutated cancers. This modulation is complex as different WT RAS family members have opposing functions. The protein product of the WT RAS allele of the same isoform as mutated RAS is often tumor-suppressive and lost during tumor progression. In contrast, RTK-dependent activation of the WT RAS proteins from the two non-mutated WT RAS family members is tumor-promoting. Further, rebound activation of RTK–WT RAS signaling underlies therapeutic resistance to targeted therapeutics in RAS-mutated cancers. The contributions of WT RAS to proliferation and transformation in RAS-mutated cancer cells places renewed interest in upstream signaling molecules, including the phosphatase/adaptor SHP2 and the RasGEFs SOS1 and SOS2, as potential therapeutic targets in RAS-mutated cancers.

2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Jirapa Chetsawang ◽  
Piyarat Govitrapong ◽  
Banthit Chetsawang

It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 888-888
Author(s):  
Iman Fares ◽  
Rahul S. Vedula ◽  
Shabbir M. Vahanvaty ◽  
Christopher S Waters ◽  
Marlise R. Luskin ◽  
...  

Abstract Somatic mutations can have highly stereotyped positions in the myeloid clonal hierarchy and distinct patterns of co-occurring mutations. Gene mutations that cause aberrant activation of RAS/MAPK signaling are typically late events in myeloid disease progression and are closely associated with leukemic transformation. We hypothesized that the phenotypic output of oncogenic RAS signaling is dynamically reprogrammed during leukemogenesis based on evolving genetic and epigenetic context. To identify genetic alterations that may modulate RAS-mediated transformation, we evaluated 1273 adults with myelodysplastic syndrome, including 150 with mutations in NRAS, KRAS, PTPN11, CBL, RIT1, NF1, or FLT3. Somatic mutations in ASXL1 (q<0.0001), RUNX1 (q<0.0001), EZH2 (q<0.0001), BCOR (q=0.0002), and STAG2 (q=0.001) were most significantly associated with co-occurring RAS pathway mutations, compared to those without RAS pathway mutations, while TP53 mutations were less frequent (q=0.059). We validated these observations in an independent cohort of 6343 unselected patients, including 1081 patients harboring either RAS pathway mutations (n=651),TP53 mutations (n=494), or both (n=57). To define the effects of sequential acquisition of driver mutations, we developed a mouse serial transplantation model of somatic myeloid transformation. First, we used in vivo pI:pC treatment to induce biallelic inactivation of Tet2 in adult Mx1-Cre/Tet2flox/floxmice. After 12 weeks, we purified Tet2-/-or control hematopoietic stem and progenitor cells (HSPCs) and used CRISPR/Cas9 to separately introduce inactivating mutations in Ezh2, Asxl1-exon12, Stag2, or Bcor, then evaluated their functional effects using ex vivo serial replating or in vivo competitive transplantation. Tet2-/-HSPCs with control sgRNA showed a modest enhancement of serial replating compared to Tet2-wild type HSPCs, while Tet2-/-HSPCs Asxl1, Stag2, and Bcor, but not Ezh2 sgRNA had markedly enhanced serial replating capacity (>6 platings in all replicates). In primary transplantation, secondary mutations caused in vivo clonal advantage after 16 weeks, but never resulted in histologic transformation to acute leukemia. We next evaluated the impact of tertiary NRASG12Dmutations in each pairwise Tet2-/-CRISPR combination (Asxl1, Bcor, Ezh2, Stag2, control). We purified HSPCs from recipient mice 16 weeks after primary transplantation, transduced with a lentiviral NRASG12Dexpression vector and transplanted into secondary recipients. Recipients of Tet2/Bcor/NRAS, Tet2/Asxl1/NRAS, or Tet2/Ezh2/NRAS cells succumbed to CD11b+myeloid disease with variable latency in Bcor (14 days), Ezh2 (50 days), and Asxl1 (120 days) cells, suggesting that combined Tet2 and PRC1/2 alterations may modify the effects of oncogenic RAS signaling. To determine whether pre-existing epigenetic mutations cooperate to alter the transcriptional response to acute oncogenic stress compared to wild type cells, weperformed RNA-seq 12 and 24 hours after induced expression of NRASG12D in isogenic immortalized mouse progenitor cells deficient for Tet2, Bcor, or both Tet2 and Bcor. We observed rapid activation of inflammatory and cellular senescence programs in all conditions, suggesting a genotype-independent immediate early response to oncogenic signaling. However, we also identified genotype-specific regulation of tumor suppressor and cell cycle checkpoint pathways. While Cdnk1a expression was strongly induced in all conditions, Cdnk2a expression (and p16Ink4a and p19ARF protein levels) was preferentially upregulated in the context of Bcor deficiency. Moreover, expression of the p53 negative regulator Mdm2 was increased 11-fold in Tet2/Bcor-deficient cells, but only 4 to 5-fold in wild type, Tet2-, or Bcor-deficient cells. Tet2/Bcor-deficient cells were significantly more sensitive to treatment with the Mdm2 antogonist, Nutlin, upon induction of NRAS expression than were wild-type cells, suggesting that Mdm2 overexpression directly mediates acquired tolerance of oncogene stress. These human genetic data and mouse models suggest that epigenetic alterations occurring during early myeloid leukemogenesis may enable evasion of oncogene protection mechanism. Bcor mutations can pair with initiating Tet2 mutations to facilitate RAS mediated transformation while incurring a dependency on Mdm2 overexpression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3397-3406 ◽  
Author(s):  
Ashley F. Ward ◽  
Benjamin S. Braun ◽  
Kevin M. Shannon

AbstractRas proteins are critical nodes in cellular signaling that integrate inputs from activated cell surface receptors and other stimuli to modulate cell fate through a complex network of effector pathways. Oncogenic RAS mutations are found in ∼ 25% of human cancers and are highly prevalent in hematopoietic malignancies. Because of their structural and biochemical properties, oncogenic Ras proteins are exceedingly difficult targets for rational drug discovery, and no mechanism-based therapies exist for cancers with RAS mutations. This article reviews the properties of normal and oncogenic Ras proteins, the prevalence and likely pathogenic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of these cancers, and implications for drug discovery. Because hematologic malignancies are experimentally tractable, they are especially valuable platforms for addressing the fundamental question of how to reverse the adverse biochemical output of oncogenic Ras in cancer.


2006 ◽  
Vol 5 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Changbin Chen ◽  
Young-sil Ha ◽  
Ji-young Min ◽  
Stephen D. Memmott ◽  
Martin B. Dickman

ABSTRACT Cdc42 is a highly conserved small GTP-binding protein that is involved in regulating morphogenesis in eukaryotes. In this study, we isolated and characterized a highly conserved Cdc42 gene from Colletotrichum trifolii (CtCdc42), a fungal pathogen of alfalfa. CtCdc42 is, at least in part, functionally equivalent to Saccharomyces cerevisiae Cdc42p, since it restores the temperature-sensitive phenotype of a yeast Cdc42p mutant. Inhibition of CtCdc42 by expression of an antisense CtCdc42 or a dominant negative form of CtCdc42 (DN Cdc42) resulted in appressorium differentiation under noninductive conditions, suggesting that CtCdc42 negatively regulates pathogenic development in this fungus. We also examined the possible linkage between CtCdc42 and Ras signaling. Expression of a dominant active Cdc42 (DA Cdc42) in C. trifolii leads to aberrant hyphal growth under nutrient-limiting conditions. This phenotype was similar to that of our previously reported dominant active Ras (DA Ras) mutant. Also consistent with our observations of the DA Ras mutant, high levels of reactive oxygen species (ROS) were observed in the DA Cdc42 mutant, and proline restored the wild-type phenotype. Moreover, overexpression of DN Cdc42 resulted in a significant decrease in spore germination, virtually no hyphal branching, and earlier sporulation, again similar to what we observed in a dominant negative Ras (DN Ras) mutant strain. Interestingly, coexpression of DA Cdc42 with DN Ras resulted in germination rates close to wild-type levels, while coexpression of DN Cdc42 with the DA Ras mutant restored the wild-type phenotype. These data suggest that CtCdc42 is positioned as a downstream effector of CtRas to regulate spore germination and pathogenic development.


2021 ◽  
Author(s):  
Muhammad S Azman ◽  
Martin Dodel ◽  
Federica Capraro ◽  
Rupert Faraway ◽  
Maria Dermit ◽  
...  

Oncogenic RAS signaling reprograms gene expression through both transcriptional and post-transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well-characterized, how RAS post-transcriptionally modulates gene expression to promote malignancy is unclear. Using quantitative RNA Interactome Capture analysis, we reveal that oncogenic RAS signaling reshapes the RNA-bound proteomic landscape of cancer cells, with a network of nuclear proteins centered around Nucleolin displaying enhanced RNA-binding activity. We show that Nucleolin is phosphorylated downstream of RAS, which increases its binding to pre-ribosomal-RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This Nucleolin-dependent enhancement of ribosome biogenesis is crucial for RAS-induced cancer cell proliferation, and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA-binding activity of Nucleolin, and highlights the crucial role of this process in RAS-mediated tumorigenesis.


2019 ◽  
Vol 76 (6) ◽  
pp. 872-884.e5 ◽  
Author(s):  
Elizabeth M. Terrell ◽  
David E. Durrant ◽  
Daniel A. Ritt ◽  
Nancy E. Sealover ◽  
Erin Sheffels ◽  
...  

2000 ◽  
Vol 113 (8) ◽  
pp. 1427-1434 ◽  
Author(s):  
M. Khosla ◽  
G.B. Spiegelman ◽  
R. Insall ◽  
G. Weeks

Disruption of the rasG gene in Dictyostelium discoideum results in several distinct phenotypes: a defect in cytokinesis, reduced motility and reduced growth. Reintroduction of the rasG gene restores all of the properties of the rasG(-) cells to those of the wild type. To determine whether the defects are due to impaired interactions with a single or multiple downstream effectors, we tested the ability of the highly related but non identical Dictyostelium ras genes, rasD and rasB, to rescue the defects. Introduction of the rasD gene under the control of the rasG promoter into rasG null (rasG(-)) cells corrected all phenotypes except the motility defect, suggesting that motility is regulated by a RasG mediated pathway that is different to those regulating growth or cytokinesis. Western blot analysis of RasD protein levels revealed that vegetative rasG(-)cells contained considerably more protein than the parental AX-3 cells, suggesting that RasD protein levels are negatively regulated in vegetative cells by RasG. The level of RasD was enhanced when the rasD gene was introduced under the control of the rasG promoter, and this increase in protein is presumably responsible for the reversal of the growth and cytokinesis defects of the rasG(-)cells. Thus, RasD protein levels are controlled by the level of RasG, but not by the level of RasD. Introduction of the rasB gene under the control of the rasG promoter into rasG(-) cells produced a complex phenotype. The transformants were extremely small and mononucleate and exhibited enhanced motility. However, the growth of these cells was considerably slower than the growth of the rasG(-) cells, suggesting the possibility that high levels of RasB inhibit an essential process. This was confirmed by expressing rasB in wild-type cells; the resulting transformants exhibited severely impaired growth. When RasB protein levels were determined by western blot analysis, it was found that levels were higher in the rasG(-)cells than they were in the wild-type parental, suggesting that RasG also negatively regulates rasB expression in vegetative cells. Overexpression of rasB in the rasG(-)cells also reduced the level of RasD protein. In view of the fact that alternate Ras proteins correct some, but not all, of the defects exhibited by the rasG(-) cells, we propose that RasG interacts with more than one downstream effector. In addition, it is clear that the levels of the various Ras proteins are tightly regulated in vegetative cells and that overexpression can be deleterious.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1134-1134
Author(s):  
Kelly A O'Brien ◽  
Nissim Hay ◽  
Xiaoping Du

Abstract Abstract 1134 Ligand binding to integrins mediates cell adhesion and transmits “outside in” signals that lead to cell spreading, migration, and proliferation. In platelets, the prototype integrin aIIbb3-mediated outside-in signaling is required for platelet spreading and retraction, and greatly amplifies platelet activation. Previous studies suggest that phosphoinositide 3-Kinases (PI3K) are activated upon binding of integrin αIIbβ3 to its ligand fibrinogen, and is important in outside-in signaling leading to platelet spreading. However, the mechanism by which PI3K transmits outside-in signals has been unclear. A major known downstream effector of PI3K is the Akt (protein kinase B) family of serine/threonine kinases, including Akt1, Akt2, and Akt3. We have recently shown that platelets not only express Akt1 and Akt2 as previously reported, but also express a substantial amount of Akt3. To investigate whether Akt3 is a downstream effector mediating PI3K-dependent integrin outside-in signaling, platelets from Akt3 knockout mice were compared with wild type platelets for their spreading on fibrinogen. Platelets from Akt3−/− mice showed partially, but significantly reduced spreading on fibrinogen, indicating that Akt3 is important in integrin-mediated outside-in signaling leading to platelet spreading. Consistent with the results of Akt3 knockout, treatment of platelets with a pan Akt inhibitor also significantly inhibited spreading of human and mouse platelets on fibrinogen. Akt becomes phosphorylated upon platelet spreading on fibrinogen, which is significantly reduced in Akt3 knockout platelets, and is abolished by PI3 Kinase inhibitor, wortmannin, or Src Family Kinase (SFK) Inhibitor, PP2, suggesting that Akt activation is downstream from PI3K, and SFK during integrin outside-in signaling. Thus, our data reveals that Akt3 is an important downstream effector of PI3K-dependent integrin outside-in signaling promoting platelet spreading. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (14) ◽  
pp. 5933-5946 ◽  
Author(s):  
Heping Yang ◽  
Nathaniel Magilnick ◽  
Candy Lee ◽  
Denise Kalmaz ◽  
Xiaopeng Ou ◽  
...  

ABSTRACT Glutamate-cysteine ligase catalytic subunit (GCLC) is regulated transcriptionally by Nrf1 and Nrf2. tert-Butylhydroquinone (TBH) induces human GCLC via Nrf2-mediated trans activation of the antioxidant-responsive element (ARE). Interestingly, TBH also induces rat GCLC, but the rat GCLC promoter lacks ARE. This study examined the role of Nrf1 and Nrf2 in the transcriptional regulation of rat GCLC. The baseline and TBH-mediated increase in GCLC mRNA levels and rat GCLC promoter activity were lower in Nrf1 and Nrf2 null (F1 and F2) fibroblasts than in wild-type cells. The basal protein and mRNA levels and nuclear binding activities of c-Jun, c-Fos, p50, and p65 were lower in F1 and F2 cells and exhibited a blunted response to TBH. Lower c-Jun and p65 expression also occurs in Nrf2 null livers. Levels of other AP-1 and NF-κB family members were either unaffected (i.e., JunB) or increased (i.e., Fra-1). Overexpression of Nrf1 and Nrf2 in respective cells restored the rat GCLC promoter activity and response to TBH but not if the AP-1 and NF-κB binding sites were mutated. Fra-1 overexpression lowered endogenous GCLC expression and rat GCLC promoter activity, while Fra-1 antisense had the opposite effects. In conclusion, Nrf1 and Nrf2 regulate rat GCLC promoter by modulating the expression of key AP-1 and NF-κB family members.


ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Raymond R. Mattingly

The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.


Sign in / Sign up

Export Citation Format

Share Document