scholarly journals Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 924
Author(s):  
Julie Quessada ◽  
Wendy Cuccuini ◽  
Paul Saultier ◽  
Marie Loosveld ◽  
Christine J. Harrison ◽  
...  

Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1363-1363
Author(s):  
Stephan Emmrich ◽  
Jenny Katsman-Kuipers ◽  
Kerstin Henke ◽  
Razan Jammal ◽  
Felix Engeland ◽  
...  

Abstract S.E. and J.K.K. as well as J.H.K. and M.M.H.E. contributed equally to this study. MicroRNAs (miRNAs) play a pivotal role in the regulation of hematopoiesis and in the development of leukemia. In addition, modulation of miRNA expression can be exploited therapeutically. To identify tumor suppressive miRNAs in pediatric acute myeloid leukemia (AML), we performed a large-scale miRNA expression profiling in 90 cytogenetically characterized, de novo AML cases using a RT-qPCR platform. In total, 253 miRNAs were significantly differentially expressed between patients with MLL rearrangements, t(8;21), inv(16), t(7;12), and t(15;17). Hierarchical clustering of patient samples using these sets of miRNA values showed that t(15;17) samples clearly cluster away from the other pediatric AML samples while t(7;12) patients cluster closely to core binding factor AMLs, (t(8;21) and inv(16). These three groups largely cluster away from the majority of MLL rearranged samples. Eight miRNAs specifically downregulated in MLL rearranged, t(8;21) and inv(16) AMLs were functionally evaluated in vitro using three cell lines representing those cytogenetic groups: THP-1 (MLL rearranged), KASUMI-1 (t[8;21]) and ME-1 (inv[16]). Two of two miRNAs tested in KASUMI-1 cells (miR-9 and miR-582), two of three miRNAs tested in ME-1 (miR-192/194 bicistron and miR-660) and one of three miRNAs tested in THP-1 (miR-181a/b bicistron) reduced cell growth and colony-forming capacity upon ectopic expression. In KASUMI-1 cells, one miRNA was identified, miR-9, that not only reduced cell growth and colony forming capacity but also strongly induced monocytic differentiation in concert with calcitriol without affecting apoptosis. During normal hematopoiesis miR-9 is only expressed in macrophages.The effects on cell growth, colony-forming capacity and differentiation were confirmed in a second AML cell line with t(8;21), SKNO-1. The differentiation induction was restricted to t(8;21) leukemic cell lines, while its growth inhibitory function was also evident in normal CD34+ hematopoietic stem and progenitor cells. Most strikingly, miR-9 exerted a tumor suppressive function in primary leukemic blasts from patients with t(8;21) (n=2), but not in patients with MLL rearrangements (n=3). Using global gene expression studies upon ectopic miR-9 expression, we identified and validated LIN28B and HMGA2 as high fidelity target genes of miR-9 by RT-qPCR, western blotting and luciferase reporter assays. LIN28B is known to suppress let-7 processing. Indeed, miR-9 overexpresion increased the levels of mature let-7 family members, also leading to HMGA2 downregulation. ShRNA-mediated downregulation of LIN28B or HMGA2 partially recapitulated the effects of miR-9 on proliferation and differentiation of t(8;21) cell lines. Thus, miR-9 is a tumor suppressor-miR in t(8;21) de novo pediatric AML, that acts in a stringent cell context dependent manner in concert with let-7 family members by repressing the oncogenic LIN28B/HMGA2 axis. This work was supported by grants to J.H.K. from the German National Academic Foundation (KL-2374/2-1) and to J.K.K., L.V., A.D.vO, C.M.Z. and M.M.H.-E. from the Children Cancer Free Foundation (KIKA, project 49). Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ismael F. Alarbeed ◽  
Abdulsamad Wafa ◽  
Faten Moassass ◽  
Bassel Al-Halabi ◽  
Walid Al-Achkar ◽  
...  

Abstract Background Approximately 30% of adult acute myeloid leukemia (AML) acquire within fms-like tyrosine kinase 3 gene (FLT3) internal tandem duplications (FLT3/ITDs) in their juxtamembrane domain (JMD). FLT3/ITDs range in size from three to hundreds of nucleotides, and confer an adverse prognosis. Studies on a possible relationship between of FLT3/ITDs length and clinical outcomes in those AML patients were inconclusive, yet. Case presentation Here we report a 54-year-old Arab male diagnosed with AML who had two FLT3-ITD mutations in addition to NPM1 mutation. Cytogenetic approaches (banding cytogenetics) and fluorescence in situ hybridization (FISH) using specific probes to detect translocations t(8;21), t(15;17), t(16;16), t(12;21), and deletion del(13q)) were applied to exclude chromosomal abnormalities. Molecular genetic approaches (polymerase chain reaction (PCR) and the Sanger sequencing) identified a yet unreported combination of two new mutations in FLT3-ITDs. The first mutation induced a frameshift in JMD, and the second led to a homozygous substitution of c.1836T>A (p.F612L) also in JMD. Additionally a NPM1 type A mutation was detected. The first chemotherapeutic treatment was successful, but 1 month after the initial diagnosis, the patient experienced a relapse and unfortunately died. Conclusions To the best of our knowledge, a combination of two FLT3-ITD mutations in JMD together with an NPM1 type A mutation were not previously reported in adult AML. Further studies are necessary to prove or rule out whether the size of these FLT3-ITDs mutations and potential other double mutations in FLT3-ITD are correlated with the observed adverse outcome.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Feng Jiang ◽  
Xin-Yu Wang ◽  
Ming-Yan Wang ◽  
Yan Mao ◽  
Xiao-Lin Miao ◽  
...  

Objective. The aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic method for pediatric acute myeloid leukemia (AML). Methods. Transcriptome profiles and clinical follow-up details were obtained in Therapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A bioinformatics method was utilized to identify the diagnostic and prognostic value. Results. A three-gene (STAT1, BATF, EML4) signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion. In summary, our three-gene signature can be a useful tool to predict the OS in AML patients.


2019 ◽  
Vol 08 (04) ◽  
pp. 193-197
Author(s):  
Anudishi Tyagi ◽  
Raja Pramanik ◽  
Radhika Bakhshi ◽  
Sreenivas Vishnubhatla ◽  
Sameer Bakhshi

AbstractThis prospective study aimed to compare the pattern of mitochondrial deoxyribonucleic acid D-loop (mt-DNA D-loop) variations in 41 paired samples of de novo pediatric acute myeloid leukemia (AML) (baseline vs. relapse) patients by Sanger's sequencing. Mean mt-DNA D-loop variation was 10.1 at baseline as compared with 9.4 per patients at relapse. In our study, 28 (68.3%) patients showed change in number of variations from baseline to relapse, 11 (26.8%) patients showed increase, 17 (41.6%) patients showed decrease, and 7 (17.1%) patients who suffered a relapse had a gain at position T489C. No statistically significant difference was observed in the mutation profile of mt-DNA D-loop region from baseline to relapse in the evaluated population of pediatric AML.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1997-2004 ◽  
Author(s):  
G Del Poeta ◽  
R Stasi ◽  
G Aronica ◽  
A Venditti ◽  
MC Cox ◽  
...  

Abstract Cytofluorimetric detection of the multidrug resistance (MDR)-associated membrane protein (P-170) was performed at the time of diagnosis in 158 patients with acute myeloid leukemia using the C219 monoclonal antibody (MoAb). In 108 of these cases the JSB1 MoAb was also tested. An improved histogram subtraction analysis, based on curve fitting and statistical test was applied to distinguish antigen-positive from antigen-negative cells. A marker was considered positive when more than 20% of the cells were stained. At onset, P-170 was detected in 43% of cases with C219 and in 73% of cases with JSB1. There was a strict correlation between C219 and JSB1 positivity, as all C219+ cases were also positive for JSB1 MoAb (P < .001). No relationship was found between sex, age, organomegaly, and MDR phenotype. Significant correlation was found between CD7 and both C219 and JSB1 expression (P < .001 and .001, respectively). C219-negative phenotype was more often associated with a normal karyotype (24 of 55 with P = .030). Rhodamine 123 (Rh123) staining and flow cytometry analysis showed a significantly decreased mean fluorescence in 51 C219+ and 38 JSB1+ patients compared to 42 MDR negative ones (P < .001). The rate of first complete remission (CR) differed both between C219+ and C219- cases and between JSB+ and JSB- ones (30.9% v 71.1% and 35.4% v 93.1%, respectively, P < .001). Of the 21 C219+ patients who had yielded a first CR, 19 (90.4%) relapsed, compared with 28 of 64 (43.7%) C219- patients (P < .001). Of the 28 JSB1+ patients in first CR, 17 (60.7%) relapsed relative to 8 (29.6%) of 27 JSBI- ones (P = .021). A higher rate of relapses among MDR+ compared with MDR- patients was observed both for C219 and JSB1 MoAbs taken separately (C219 80% v 44%; JSB1 52% v 27%), with no relationship to age. The survival rates (Kaplan-Meyer method) were significantly shorter both in C219+ patients and in JSB1+ cases (P < .001). Disease-free survival curves followed this same trend. The combination (C219- JSB1+) identified a subset of patients with an intermediate outcome compared to C219 positive cases. The prognostic value of both markers (C219 and JSB1) was confirmed in multivariate analysis. These results suggest that the assessment of MDR phenotype by flow cytometry may be an important predictor of treatment outcome.


Blood ◽  
2012 ◽  
Vol 120 (16) ◽  
pp. 3187-3205 ◽  
Author(s):  
Ursula Creutzig ◽  
Marry M. van den Heuvel-Eibrink ◽  
Brenda Gibson ◽  
Michael N. Dworzak ◽  
Souichi Adachi ◽  
...  

Abstract Despite major improvements in outcome over the past decades, acute myeloid leukemia (AML) remains a life-threatening malignancy in children, with current survival rates of ∼ 70%. State-of-the-art recommendations in adult AML have recently been published in this journal by Döhner et al. The primary goal of an international expert panel of the International BFM Study Group AML Committee was to set standards for the management, diagnosis, response assessment, and treatment in childhood AML. This paper aims to discuss differences between childhood and adult AML, and to highlight recommendations that are specific to children. The particular relevance of new diagnostic and prognostic molecular markers in pediatric AML is presented. The general management of pediatric AML, the management of specific pediatric AML cohorts (such as infants) or subtypes of the disease occurring in children (such as Down syndrome related AML), as well as new therapeutic approaches, and the role of supportive care are discussed.


Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3605-3611 ◽  
Author(s):  
Marry M. van den Heuvel-Eibrink ◽  
Erik A. C. Wiemer ◽  
Marjan J. de Boevere ◽  
Bronno van der Holt ◽  
Paula J. M. Vossebeld ◽  
...  

The expression of P-glycoprotein (P-gp), encoded by theMDR1 gene, is an independent adverse prognostic factor for response and survival in de novo acute myeloid leukemia (AML). Little is known about MDR1 expression during the development of disease. The present study investigated whether MDR1 gene– related clonal selection occurs in the development from diagnosis to relapsed AML, using a genetic polymorphism of the MDR1 gene at position 2677. Expression and function of P-gp were studied using monoclonal antibodies MRK16 and UIC2 and the Rhodamine 123 retention assay with or without PSC 833. No difference was found in the levels of P-gp function and expression between diagnosis and relapse in purified paired blast samples from 30 patients with AML. Thirteen patients were homozygous for the genetic polymorphism ofMDR1 (n = 7 for guanine, n = 6 for thymidine), whereas 17 patients were heterozygous (GT). In the heterozygous patients, no selective loss of one allele was observed at relapse. Homozygosity for the MDR1 gene (GG or TT) was associated with shorter relapse-free intervals (P = .002) and poor survival rates (P = .02), compared with heterozygous patients. No difference was found in P-gp expression or function in patients with AML with either of the allelic variants of the MDR1 gene. It was concluded that P-gp function or expression is not upregulated at relapse/refractory disease and expression of one of the allelic variants is not associated with altered P-gp expression or function in AML, consistent with the fact that MDR1 gene–related clonal selection does not occur when AML evolves to recurrent disease.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3263-3263
Author(s):  
Luca Lo Nigro ◽  
Laura Sainati ◽  
Anna Leszl ◽  
Elena Mirabile ◽  
Monica Spinelli ◽  
...  

Abstract Background: Myelomonocytic precursors from acute or chronic leukemias can differentiate to dendritic cells in vitro, but leukemias with a dendritic cell immunophenotype are rare, have been reported mainly in adults, and their molecular pathogenesis is unknown. Dendritic cells are classified as Langherans, myeloid and lymphoid/plasmacytoid cells, but leukemias arising from dendritic cells are unclassified in the FAB system. We identified a new entity of pediatric acute myeloid leukemia (AML) presenting with morphologic and immunophenotypic features of mature dendritic cells, which is characterized by MLL gene translocation. Methods and Results: Standard methods were used to characterize the morphology, immunophenotype, karyotype and MLL translocations in 3 cases of pediatric AML. The patients included two boys and one girl diagnosed with AML between 1–6 years old. Their clinical histories and findings included fever, pallor, abdominal and joint pain, adenopathy, hepatosplenomegaly, normal WBC counts but anemia and thrombocytopenia. and no evidence of CNS disease. The bone marrow aspirates were hypocellular and replaced completely by large blasts with irregular nuclei, slightly basophilic cytoplasm, and prominent cytoplasmic projections. There were no cytoplasmatic granules or phagocytosis. Myeloperoxidase and alpha napthyl esterase reactions were negative, excluding FAB M5 AML, and the morphology was not consistent with any standard FAB morphologic diagnosis. The leukemic blasts in all three cases were CD83+, CD86+, CD116+, consistent with differentiated myeloid dendritic cells, and did not express CD34, CD56 or CD117. MLL translocations were identified in all 3 cases. In the first case FISH analysis showed t(10;11)(p12;q23) and RT-PCR identified and a ‘5-MLL-AF10-3’ fusion transcript. In the second case FISH analysis showed t(9;11)(p22;q23) and RT-PCR identified and a ‘5-MLL-AF9-3’ fusion transcript. In the remaining case, the MLL gene rearrangement was identified by Southern blot analysis and RT-PCR showed an MLL-AF9 fusion transcript. The fusion transcripts in all 3 cases were in-frame. Remission induction was achieved with intensive chemotherapy, and all three patients have remained in durable remission for 30–60 months after hematopoietic stem cell transplantation. Conclusions. We have characterized a new pediatric AML entity with features of mature dendritic cells, MLL translocation and an apparently favorable prognosis. The in-frame MLL fusion transcripts suggest that chimeric MLL oncoproteins underlie its pathogenesis. The partner genes in all 3 cases were known partner genes of MLL that encode transcription factors. This study increases the spectrum of leukemias with MLL translocations. Comprehensive morphological, immunophenotypic, cytogenetic and molecular analyses are critical for this diagnosis, and will reveal its frequency and spectrum as additional cases are uncovered.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4889-4889
Author(s):  
Kalliopi N Manola ◽  
Agapi Parcharidou ◽  
Vassilios Papadakis ◽  
Maria Kalntremtziou ◽  
Chryssa Stavropoulou ◽  
...  

Abstract Acute myeloid leukemia (AML) accounting for approximately 17% of all childhood acute leukemias, arises either de novo or from a backround of myelodysplasia or previous chemotherapy. Cytogenetics is considered one of the most valuable prognostic determinants in AML while current risk–group classification in the limited cases of pediatric AML, is mainly based on cytogenetics and early treatment response. We reviewed the clinical and cytogenetic characteristics and the outcomes of 33 cases of childhood AML between 1997 and 2007 in order to investigate the incidence of the main FAB subtypes, the incidence of primary AML compared to secondary AML (s-AML) and the correlation between specific chromosome abnormalities and outcome in greek pediatric AML patients. Chromosome studies were performed on unstimulated bone marrow cells, derived from 33 pediatric AML patients, who were &lt;18 years of age at the time of diagnosis. Eighteen patients were male and 15 were female. According to FAB classification one patient was classified as M0 (3%), 13 patients as M2 (39.4%), 4 as M3 (12.12%), 4 as M5 (12.12%), 2 as M6 (6.1%) and 4 as M7 (12.12%). No patient was classified as M4 while 5 patients with s-AML (15.15%) could not be classified. The median follow-up of all patients was 57.95 months (0.03–132.47). Overal survival and event free survival were 66,7% and 75,8% respectively. Eight patients with s-AML and 25 patients with primary AML were identified. The median age of patients with s-AML at diagnosis was 9.15 years while the median age of patients with primary AML was 7.2 years. Six out of 8 patients with s-AML died at a median follow up of 11.03 months. Nineteen out of 25 patients with primary AML are alive in complete remission (CR). Cytogenetic analysis was performed at diagnosis in 32 patients and results were obtained in 30 of them. The karyotype was abnormal in 21 out of 30 patients (70%). Normal karyotype was found in 9 patients, t(8;21)(q22;q22) in 5, t(15;17)(q22;q21) in 3, t(9;11)(p22;q23) in 3, −7/del(7q) in 5, del(9q) in 3, and complex karyotype in 4 patients. Three out of 4 patients with M3 are alive in CR with a median follow-up of 98.6 months while one with s-AML-M3 died 13 days post diagnosis. Three out of five patients with M2 and t(8;21), including 1 patient with s-AML, died at a median follow-up of 4.35 months. Three out of 5 patients with −7/del(7q) had s-AML and died in less than 4 years, while the two others are alive for more than 5 years, in CR. Although all patients with M7 had complex karyotypes, they are alive after a median follow-up of 96.73 months, 3 of them in CR and 1 in relapse. These results indicate that in greek patients, the main FAB subtypes show a distribution similar to that reported in the literature with the exception of M4 which is absent in our study but with a reported incidence of 20%. Pediatric patients with s-AML are older and their outcome is poor and is related to a higher probability of poor cytogenetic features compared to primary AML patients. Interestingly all patients with M7 had a good clinical course although they exhibited complex karyotypes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1073-1073
Author(s):  
Hiroto Inaba ◽  
Jeffrey E Rubnitz ◽  
Elaine Coustan-Smith ◽  
Lie Li ◽  
Brian D Furmanski ◽  
...  

Abstract Abstract 1073 Background: Aberrant receptor tyrosine kinase (RTK) signaling arising from genetic abnormalities, such as FLT3-internal tandem duplications (FLT3-ITD), is an important mechanism in the development and growth of acute myeloid leukemia (AML) and is often associated with a poor outcome. Hence, inhibition of RTK signaling is an attractive novel treatment option, particularly for disease that is resistant to conventional chemotherapy. We evaluated the clinical activity of the multikinase inhibitor sorafenib in children with de novo FLT3-ITD–positive AML or relapsed/refractory AML. Methods: Fourteen patients were treated. Six patients with newly diagnosed FLT3- ITD–positive AML (aged 9–16 years; median, 12 years) received 2 cycles of remission induction therapy and then started sorafenib (200 mg/m2 twice daily for 20 days) the day after completing induction II (low-dose cytarabine, daunorubicin, and etoposide). Nine patients (aged 6–17 years; median, 9 years) with relapsed AML (including one treated on the above regimen) received sorafenib alone (2 dose levels; 200 and 150 mg/m2) twice daily for the first week of therapy, concurrently with clofarabine and cytarabine on days 8–12, and then alone from days 13 to 28. Sorafenib pharmacokinetics were analyzed at steady-state on day 8 of sorafenib in patients with newly diagnosed AML and on day 7 in patients with relapsed AML. In patients with relapsed AML, the effect of sorafenib on signaling pathways in AML cells was assessed by flow cytometry. Results: All 6 newly diagnosed patients, including 2 whose AML was refractory to induction I, achieved a complete remission (CR) after induction II; 5 had negative minimal residual disease (MRD; <0.1% AML cells in bone marrow) after induction II. Both patients in this group who relapsed achieved second remissions, one with sorafenib alone and one on the relapse regimen described above. Of the 9 patients with relapsed AML, 6 (4 with FLT3-ITD) were treated with sorafenib 200 mg/m2. All 6 had a >50% decrease in blast percentage and/or bone marrow cellularity after 1 week of sorafenib. After concurrent sorafenib and chemotherapy, 5 of the 9 patients with relapsed AML achieved CR (2 had negative MRD) and 2 achieved a partial remission (PR; 5%-25% AML cells in bone marrow); all 4 patients with FLT3-ITD had a CR or PR. After sorafenib treatment, 6 patients underwent HSCT while 2 with FLT3-ITD who could not receive HSCT were treated with single-agent sorafenib and have maintained CR for up to 8 months. Hand-foot skin reaction (HFSR) or rash occurred in all patients and improved with cessation of sorafenib. Dose-limiting toxicity (DLT, grade 3 HFSR and/or rash) was observed in 3 of the 6 patients with relapsed AML treated with 200 mg/m2 of sorafenib; no DLT was observed at 150 mg/m2. The effect of sorafenib on downstream RTK signaling was tested in the leukemic cells of 4 patients: in most samples, phosphorylation of S6 ribosomal protein and 4E-BP1 was inhibited. The mean (± SD) steady-state concentration (Css) of sorafenib was 3.3 ± 1.2 mg/L in the newly diagnosed group and 6.5 ± 3.6 mg/L (200 mg/m2) and 7.3 ± 3.6 mg/L (150 mg/m2) in those with relapsed AML. In both groups, the mean conversion of sorafenib to sorafenib N-oxide was 27%-35% (approximately 3 times greater than previously reported), and mean sorafenib N-oxide Css was 1.0–3.2 mg/L (2.1-6.7 μM). In a 442-kinase screen, the inhibitory profiles of sorafenib N-oxide and sorafenib were similar, and FLT3-ITD phosphorylation was potently inhibited by both forms (sorafenib N-oxide Kd = 0.070 μM; sorafenib Kd = 0.094 μM). Sorafenib N-oxide inhibited the growth of an AML cell line with FLT3-ITD (IC50 = 0.026 μM) and 4 AML cell lines with wild-type FLT3 (IC50 = 3.9–13.3 μM) at approximately half the potency of sorafenib. Conclusion: In children with de novo FLT3-ITD and relapsed/refractory AML, sorafenib given alone or with chemotherapy induced dramatic responses and inhibited aberrant RTK signaling in leukemic cells. Sorafenib and its active metabolite (sorafenib N-oxide) likely contribute to both efficacy and toxicity. These results warrant the incorporation of sorafenib into future pediatric AML trials. Disclosures: Inaba: Bayer/Onyx: Research Funding. Off Label Use: Sorafenib and clofarabine: both used for treatment of pediatric acute myeloid leukemia.


Sign in / Sign up

Export Citation Format

Share Document