scholarly journals Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation)

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 307
Author(s):  
Mikhail Spasennykh ◽  
Polina Maglevannaia ◽  
Elena Kozlova ◽  
Timur Bulatov ◽  
Evgeniya Leushina ◽  
...  

The current study is devoted to the determination and interpretation of geochemical trends reflecting hydrocarbon generation, migration and accumulation in unconventional reservoirs; the study is performed on the Bazhenov shale rock formation (Western Siberia, Russia). Results are based on more than 3000 Rock-Eval analyses of the samples from 34 wells drilled in the central part of the West Siberian petroleum basin, which is characterized by common marine sedimentation environments. Pyrolysis studies were carried out before and after the extraction of rocks by organic solvent. As a result, we have improved the accuracy of kerogen content and maturity determination and complemented the standard set of pyrolysis parameters with the content of heavy fraction of hydrocarbons. The data obtained for the wells from areas of different organic matter maturity was summarized in the form of cross-plots and diagrams reflecting geochemical evolution of the source rocks from the beginning to the end of the oil window. Interpretation of the obtained results revealed quantitative trends in the changes of generation potential, amount, and composition of generated hydrocarbons in rocks at different stages of oil generation process. The analysis of geochemical trends allowed us to improve approaches for the productivity evaluation of the formation and study the effect of organic matter maturity on distribution of productive intervals of different types.

2017 ◽  
Vol 47 (2) ◽  
pp. 871
Author(s):  
I. Pyliotis ◽  
A. Zelilidis ◽  
N. Pasadakis ◽  
G. Panagopoulos ◽  
E. Manoutsoglou

Rock-Eval method was used to analyze 53 samples from late Miocene Metochia Formation of Gavdos Island (south of Crete Island) in order to characterize the contained organic matter and to evaluate its potential as source rock. The samples were collected from Metochia Section which consists of about 100 m thick marlssapropels alternations. Organic matter analysis showed that the studied succession could be subdivided into two parts. The lower one, which is generally rich in organic matter and the upper one, which is poor. In the lower part the rich horizons in organic matter are characterized by Kerogen type II, III and IV, with low oxygen content, and with fair to very good potential for gas and/or oil hydrocarbon generation. Additionally, the studied samples are thermally immature. Taking into account that the studied area has never been buried in such a depth to reach conditions of maturation, as well as, that the studied section in Gavdos is connected with Messara basin located in the northeastern and, finally, that the main part of Gavdos basin, which is situated between Gavdos and Crete islands, has continuously encountered subsidence, we could conclude that sediments of Metochia Formation could act as source rocks but in the more deep central part of the Gavdos basin.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


1982 ◽  
Vol 22 (1) ◽  
pp. 5
Author(s):  
A. R. Martin ◽  
J. D. Saxby

The geology and exploration history of the Triassic-Cretaceous Clarence-Moreton Basin are reviewed. Consideration of new geochemical data ('Rock-Eval', vitrinite reflectance, gas chromatography of extracts, organic carbon and elemental analysis of coals and kerogens) gives further insights into the hydrocarbon potential of the basin. Although organic-rich rocks are relatively abundant, most source rocks that have achieved the levels of maturation necessary for hydrocarbon generation are gas-prone. The exinite-rich oil-prone Walloon Coal Measures are in most parts relatively immature. Some restraints on migration pathways are evident and igneous and tectonic events may have disturbed potentially well-sealed traps. Further exploration is warranted, even though the basin appears gas-prone and the overall prospects for hydrocarbons are only fair. The most promising areas seem to be west of Toowoomba for oil and the Clarence Syncline for gas.


2012 ◽  
Vol 616-618 ◽  
pp. 1042-1047
Author(s):  
Zhong Hong Chen

To investigate hydrocarbon potential of the evaporites, some deep wells such as Haoke-1 well and Fengshen-2 well were intensively cored, tested by TOC, Rock-Eval, and chromatography and mass spectrometry and evaluated using geochemistry of biomarker and hydrocarbon generation. High content of gammacerane and low Pr/Ph was exhibited in the evaporite system compared to the non-evaporite system. Different response of biomarkers parameters for the different sedimentary systems was exhibited, such as C19/(C19+C23) terpanes, C29/(C27+C28+C29) steranes, C24/C23 and C22/C21 tricyclic terpane. The evaporites and mud stones have the capacity to generate and expel hydrocarbons. The tested samples were mostly typeⅠand typeⅡ1 of organic matter, and their original generating capacity can reach 40 mg/g rock and 20 mg/g rock respectively. The efficiency of hydrocarbon expulsion reached 60%, but the distribution of organic matter and its generative potential was highly variable. In general, the mudstones show greater generative potential than the evaporites. High maturity severely reduced the capacity of their rocks to generate and expel petroleum.


2012 ◽  
Vol 63 (4) ◽  
pp. 319-333 ◽  
Author(s):  
Paweł Kosakowski ◽  
Dariusz Więcław ◽  
Adam Kowalski ◽  
Yuriy Koltun

Assessment of hydrocarbon potential of Jurassic and Cretaceous source rocks in the Tarnogród-Stryi area (SE Poland and W Ukraine) The Jurassic/Cretaceous stratigraphic complex forming a part of the sedimentary cover of both the eastern Małopolska Block and the adjacent Łysogóry-Radom Block in the Polish part as well as the Rava Rus'ka and the Kokhanivka Zones in the Ukrainian part of the basement of the Carpathian Foredeep were studied with geochemical methods in order to evaluate the possibility of hydrocarbon generation. In the Polish part of the study area, the Mesozoic strata were characterized on the basis of the analytical results of 121 core samples derived from 11 wells. The samples originated mostly from the Middle Jurassic and partly from the Lower/Upper Cretaceous strata. In the Ukrainian part of the study area the Mesozoic sequence was characterized by 348 core samples collected from 26 wells. The obtained geochemical results indicate that in both the south-eastern part of Poland and the western part of Ukraine the studied Jurassic/Cretaceous sedimentary complex reveals generally low hydrocarbon source-rock potential. The most favourable geochemical parameters: TOC up to 26 wt. % and genetic potential up to 39 mg/g of rock, were found in the Middle Jurassic strata. However, these high values are contradicted by the low hydrocarbon index (HI), usually below 100 mg HC/g TOC. Organic matter from the Middle Jurassic strata is of mixed type, dominated by gas-prone, Type III kerogen. In the Polish part of the study area, organic matter dispersed in these strata is generally immature (Tmax below 435 °C) whereas in the Ukrainian part maturity is sufficient for hydrocarbon generation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.


2019 ◽  
Vol 11 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Wrya J. Mamaseni ◽  
Srood F Naqshabandi ◽  
Falah Kh. Al-Jaboury

Abstract In this study collected samples of Chia Gara Formation in Atrush, Shaikhan and Sarsang oilfields are used to geochemical characteristics of organic matter in this formation. This determination was based on Rock-Eval pyrolysis and Biomarker analyses. The Chia Gara Formation can be considered as good to excellent source rock; it’s TOC content ranges from 1.14-8.5wt% with an average of 1.85%, 3.91%, and 6.94% in Atush-1, Mangesh-1 and Shaikhan-8 wells respectively. The samples of Chia Gara Formation contain kerogen type II. These properties are considered optimal for oil generation. The low oxygen index (OI) and pristane/phytane (Pr/Ph) ratios (Average 20.73, 0.61 respectively) and high hydrogen index (HI) (average 637.6) indicate that the formation was deposited under anoxic condition. According to regular sterane (C27%, C28%, C29%) and terpanes ratios (C29/C30, C31/C30 hopane), the formation was deposited in marine environment. The average value of the Carbon Preference Index (CPI) is one with Tmax values of more than 430 ºC; these indicate peak oil window for the selected samples. Overall, the 20S/(20S+20R), ββ/(ββ+αα)C29 steranes and 22R/(22R+22S)C32homohopane, with Ts/ (Ts+Tm), and moretane/ hopane ratios point to a mature organic matter and to the ability of the formation to generate oil.


Sign in / Sign up

Export Citation Format

Share Document