scholarly journals Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina

Geosciences ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 39 ◽  
Author(s):  
Gustavo Naumann ◽  
Walter Vargas ◽  
Paulo Barbosa ◽  
Veit Blauhut ◽  
Jonathan Spinoni ◽  
...  

During the last 20 years, Argentina experienced several extreme and widespread droughts in many different regions, including the core cropland areas. The most devastating recent events were recorded in the years 2006, 2009 and 2011. Reported impacts of the main events induced losses of more than 4 billion U.S. dollars and more than 1 million persons were reported to be directly or indirectly affected. In this paper, we analyse the drought risk in Argentina, taking into account recent information on drought hazard, exposure and vulnerability. Accordingly, we identified the most severe droughts in Argentina during the 2000–2015 period using a combination of drought hazard indicators and exposure layers. Three main events were identified: (1) during spring 2006 droughts peaked in the northeast of Argentina, (2) in 2009 precipitation deficits indicated a drought epicenter in the central Argentinian plains, and (3) in 2011 the northern Patagonia region experienced a combination of natural disasters due to severe drought conditions and a devastating volcanic eruption. Furthermore, we analysed the dynamics of drought exposure for the population and the main economic sectors affected by municipality, i.e., agriculture and livestock production. Assets exposed to droughts have been identified with several records of drought impacts and declarations of farming emergencies. We show that by combining exposure and vulnerability with drought intensity it is feasible to detect the likelihood of regional impacts in different sectors.

2020 ◽  
Vol 12 (3) ◽  
pp. 752 ◽  
Author(s):  
Janna Frischen ◽  
Isabel Meza ◽  
Daniel Rupp ◽  
Katharina Wietler ◽  
Michael Hagenlocher

The devastating impacts of drought are fast becoming a global concern. Zimbabwe is among the countries more severely affected, where drought impacts have led to water shortages, declining yields, and periods of food insecurity, accompanied by economic downturns. In particular, the country’s agricultural sector, mostly comprised of smallholder rainfed systems, is at great risk of drought. In this study, a multimethod approach is applied, including a remote sensing-based analysis of vegetation health data from 1989–2019 to assess the drought hazard, as well as a spatial analysis combined with expert consultations to determine drought vulnerability and exposure of agricultural systems. The results show that droughts frequently occur with changing patterns across Zimbabwe. Every district has been affected by drought during the past thirty years, with varying levels of severity and frequency. Severe drought episodes have been observed in 1991–1992, 1994–1995, 2002–2003, 2015–2016, and 2018–2019. Drought vulnerability and exposure vary substantially in the country, with the south-western provinces of Matabeleland North and South showing particularly high levels. Assessments of high-risk areas, combined with an analysis of the drivers of risk, set the path towards tailor-made adaptation strategies that consider drought frequency and severity, exposure, and vulnerability.


2020 ◽  
Author(s):  
Veit Blauhut ◽  
Claudia Teutschbein ◽  
Mathias N. Andersen ◽  
Manuela Brunner ◽  
Carmelo Cammalleri ◽  
...  

<p>In recent years, the adverse effects of drought have been experienced and perceived more severely and frequently all over Europe. These impacts are a result of the drought hazard and the socio-economic and ecological vulnerability. Due to the heterogeneity of Europe’s hydro-climatology and its cultural, political, social and economic diversity , the socio-economic and ecological impacts vary not only with respect to the extent, duration and severity of the drought, but also with the characteristics of affected societies, economic sectors and ecosystems. </p><p>The lack  of understanding the spatio-temporal differences in the drivers of drought risk hinders the successful mitigation of future impacts, and the design of suitable reactive and proactive drought action plans. Therefore, this study describes the European drought events of 2018 and 2019 beyond the hazard. The hypothesis to be proven is that similar hazard conditions result in different impacts due to national and sub-national differences in drought vulnerability, perception and drought-risk management. Based on research in 35 European countries, comparable national datasets on drought management and perception are established. For each of these countries, a uniform questionnaire was distributed to water management-related stakeholders at different administrative levels. A major focus of the questions was the perception and impacts of the recent droughts and current management strategies on a national and sub-national scale. The results of the questionnaires are also compared to country-scale profiles of past drought events for different drought types, i.e. meteorological, soil moisture, hydrological and vegetation drought, which were established based on information derived from the European Drought Observatory indicator system.</p><p>The results highlight a large diversity in the national perception of drought as a natural hazard and its impacts; but also a different spatial extent of 2018/2019 drought events At the same time,  existing drought management strategies are shown to increase national and sub-national resilience. The study, therefore, calls for international exchange and mutual learning to improve national and international drought governance and management.</p>


2019 ◽  
Vol 11 (5) ◽  
pp. 1442 ◽  
Author(s):  
Mahiuddin Alamgir ◽  
Morteza Mohsenipour ◽  
Rajab Homsi ◽  
Xiaojun Wang ◽  
Shamsuddin Shahid ◽  
...  

Droughts are more damaging when they occur during crop growing season. This research assessed the spatial distribution of drought risks to crops in Bangladesh. Catastrophe theory-based weighting method was used to estimate drought hazard, exposure, and risk by avoiding potential human bias. Ten major crops, including eight different types of rice, wheat, and potato, were selected for evaluation of drought risk. Results showed that 32.4%, 27.2%, and 16.2% of land in Bangladesh is prone to extreme Kharif (May-October), Rabi (November-April), and pre-Kharif (March-May) droughts, respectively. Among the major crops, Hybrid Boro rice cultivated in 18.2% of the area is found to be highly vulnerable to droughts, which is followed by High Yield Varity (HYV) Boro (16.9%), Transplant Aman (16.4%), HYV Aman (14.1%), and Basic Aman (12.4%) rice. Hybrid Boro rice in 12 districts, different varieties of Aman rice in 10 districts, and HYV Boro rice in 9 districts, mostly located in the north and northwest of Bangladesh, are exposed to high risk of droughts. High frequency of droughts and use of more land for agriculture have made the region highly prone to droughts. The methodology adopted in this study can be utilized for unbiased estimation of drought risk in agriculture in order to adopt necessary risk reduction measures.


2019 ◽  
Author(s):  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Patrícia Páscoa ◽  
Carlos A. L. Pires

Abstract. Extreme weather events, such as droughts, have been increasingly affecting the agricultural sector causing several socio-economic consequences. The growing economy requires improved assessments of drought-related impacts in agriculture, particularly under a climate that is getting drier and warmer. This work proposes a probabilistic model which intends to contribute to the agricultural drought risk management in rainfed cropping systems. Our methodology is based on a bivariate copula-approach using Elliptical and Archimedean copulas, which application is quite recent in agrometeorological studies. In this work we use copulas to model joint probability distributions describing the amount of dependence between drought conditions and crop anomalies. Afterwards, we use the established copula models to simulate pairs of yield anomalies and drought hazard, preserving their dependence structure, to further estimate the probability of crop-loss. In the first step, we analyse the probability of crop-loss without distinguishing the class of drought, and in a second step we compare the probability of crop-loss under drought and non-drought conditions. The results indicate that, in general, Archimedean copulas provide the best statistical fits of the joint probability distributions, suggesting a dependence among extreme values of rainfed cereal yield anomalies and drought indicators. Moreover, the estimated conditional probabilities suggest that the likelihood of crop-loss under dry conditions is higher than under non-drought conditions. From an operational point of view, the results aim to contribute to the decision-making process in agricultural practices.


2020 ◽  
Author(s):  
Isabel Meza ◽  
Stefan Siebert ◽  
Petra Döll ◽  
Jürgen Kusche ◽  
Claudia Herbert ◽  
...  

<p>Drought is a recurrent global phenomenon considered one of the most complex hazards with manifold impacts on communities, ecosystems, and economies. While many sectors are affected by drought, agriculture’s high dependency on water makes it particularly susceptible to droughts, threatening the livelihoods of many, and hampering the achievement of the Sustainable Development Goals. Identifying pathways towards more drought resilient societies by analyzing the drivers and spatial patterns of drought risk is of increasing importance for the identification, prioritization and planning of risk reduction, risk transfer and adaptation options. While major progress has been made regarding the mapping, prediction and monitoring of drought events at different spatial scales (local to global), comprehensive drought risk assessments that consider the complex interaction of drought hazards, exposure and vulnerability factors are still the exception.</p><p>Here, we present, for the first time, a global-scale drought risk assessment at national level for both irrigated and rain-fed agricultural systems. The analysis integrates (1) composite drought hazard indicators based on historical climate conditions (1980-2016), (2) exposure data represented by the harvest area of irrigated and rainfed systems, and (3) an expert-weighted set of social-ecological vulnerability indicators. The latter were identified through a systematic review of literature (n = 105 peer-reviewed articles) and expert consultations (n = 78 experts). This study attempted to characterize the average drought risk for the whole study period.</p><p>Results show that drought risk of rain-fed and irrigated agricultural systems display different heterogeneous patterns at the global level with higher risk for southeastern Europe, as well as northern and southern Africa. The vulnerability to drought highlights the relevance to increase the countries’ coping capacity in order to reduce their overall drought risk. For instance, the United States, which despite being highly exposed to drought hazard, has low socio-ecological susceptibility and sufficiently high coping capacities to reduce the overall drought risk considerably. When comparing irrigated and rain-fed drought hazard/exposure, there are significant regional differences. For example, the northern part  of Central Africa and South America have low hazard/exposure levels of irrigated crops, resulting in a low total risk, although high vulnerability characterize these regions. South Africa, however, has a high amount of rain-fed crops exposed to drought, but a lower vulnerability compared to other African countries. Further, the drivers of drought risk vary substantially across and within countries, calling for spatially targeted risk reduction and adaptation options.</p><p>Findings from this study underline the relevance of analyzing drought risk from a holistic and integrated perspective that brings together data from different sources and disciplines and based on a spatially explicit approach. Being based on open-source data, the approach allows for reproduction in varying regions and for different spatial scales, and can serve as a blueprint for future drought risk assessments for other affected sectors, such as water supply, tourism, or energy. By providing information on the underlying drivers and patterns of drought risk, this approach supports the identification of priority regions and provides entry points for targeted drought risk reduction and adaptation options to move towards resilient agricultural systems.</p>


2021 ◽  
Author(s):  
Stefano Terzi ◽  
Mathilde Erfurt ◽  
Ruth Stephan ◽  
Kerstin Stahl ◽  
Marc Zebisch

<p>Droughts are slow and silent natural hazards that can lead to long-lasting environmental, societal and economic impacts. Mountain regions are also experiencing drought conditions with climate change affecting their environments more rapidly than other places and reducing water availability well beyond their geographical locations. These conditions call for better understanding of drought events in mountains with innovative methodologies able to capture their complex interplays.</p><p>Within this context, the Alpine Drought Observatory (ADO) Interreg Project aims to further improve the understanding of drought conditions in the Alpine Space, with activities spanning from the characterization of drought types’ components in five heterogeneous case studies in Austria, France, Italy, Slovenia and Switzerland. For each case study, different sectors exposed to drought, ranging from hydropower, agriculture to tourism are considered. Moreover, specific socio-economic characteristics were collected for each sector in order to better understand the main drivers leading to drought impacts.</p><p>Starting from the risk concept in the IPCC AR5, the Impact Chains (IC) methodology has been applied to characterize the hazard, exposure and vulnerability components in the ADO case studies. IC allowed to pinpoint the main factors affecting drought risk and the relevant socio-economic sectors integrating a mixed-method approach. Quantitative data collection on the hazard and exposure components were coupled with local experts’ knowledge on the main vulnerability factors (e.g., through a questionnaire). Although validation represents a critical part of drought modelling, IC analysis and results were therefor compared with information from the European Drought Impact Inventory (EDII) on local drought impacts collected from scientific publications, unions press releases and newspaper articles over a long time period.</p><p>While drought risk assessment through IC can improve the understanding of the main drought events and their underlying factors, they also provide insights to improve planning and management of future drought events in the Alpine Space.</p>


2019 ◽  
Vol 19 (12) ◽  
pp. 2795-2809 ◽  
Author(s):  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Patrícia Páscoa ◽  
Carlos A. L. Pires

Abstract. Extreme weather events, such as droughts, have been increasingly affecting the agricultural sector, causing several socio-economic consequences. The growing economy requires improved assessments of drought-related impacts in agriculture, particularly under a climate that is getting drier and warmer. This work proposes a probabilistic model that is intended to contribute to the agricultural drought risk management in rainfed cropping systems. Our methodology is based on a bivariate copula approach using elliptical and Archimedean copulas, the application of which is quite recent in agrometeorological studies. In this work we use copulas to model joint probability distributions describing the amount of dependence between drought conditions and crop yield anomalies. Afterwards, we use the established copula models to simulate pairs of yield anomalies and drought hazard, preserving their dependence structure to further estimate the probability of crop loss. In the first step, we analyse the probability of crop loss without distinguishing the class of drought, and in the second step we compare the probability of crop loss under drought and non-drought conditions. The results indicate that, in general, Archimedean copulas provide the best statistical fits of the joint probability distributions, suggesting a dependence among extreme values of rainfed cereal yield anomalies and drought indicators. Moreover, the estimated conditional probabilities suggest that when drought conditions are below moderate thresholds, the risk of crop loss increases between 32.53 % (cluster 1) and 32.6 % (cluster 2) in the case of wheat and between 31.63 % (cluster 2) and 55.55 % (cluster 2) in the case of barley. From an operational point of view, the results aim to contribute to the decision-making process in agricultural practices.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 106 ◽  
Author(s):  
Xia Bai ◽  
Yimin Wang ◽  
Juliang Jin ◽  
Shaowei Ning ◽  
Yanfang Wang ◽  
...  

Drought is one of the most typical and serious natural disasters, which occurs frequently in most of mainland China, and it is crucial to explore the evolution characteristics of drought for developing effective schemes and strategies of drought disaster risk management. Based on the application of Cloud theory in the drought evolution research field, the cloud transformation algorithm, and the conception zooming coupling model was proposed to re-fit the distribution pattern of SPI instead of the Pearson-III distribution. Then the spatio-temporal evolution features of drought were further summarized utilizing the cloud characteristics, average, entropy, and hyper-entropy. Lastly, the application results in Northern Anhui province revealed that the drought condition was the most serious during the period from 1957 to 1970 with the SPI12 index in 49 months being less than −0.5 and 12 months with an extreme drought level. The overall drought intensity varied with the highest certainty level but lowest stability level in winter, but this was opposite in the summer. Moreover, drought hazard would be more significantly intensified along the elevation of latitude in Northern Anhui province. The overall drought hazard in Suzhou and Huaibei were the most serious, which is followed by Bozhou, Bengbu, and Fuyang. Drought intensity in Huainan was the lightest. The exploration results of drought evolution analysis were reasonable and reliable, which would supply an effective decision-making basis for establishing drought risk management strategies.


2021 ◽  
Author(s):  
Jason Otkin ◽  
Yafang Zhong ◽  
Eric Hunt ◽  
Jordan Christian ◽  
Jeff Basara ◽  
...  

<p>Flash droughts are characterized by a period of unusually rapid drought intensification over sub-seasonal time scales that often take vulnerable stakeholders by surprise given their rapid onset. Various studies have shown that flash drought is more likely to develop when extreme weather conditions persist over the same region for several weeks or longer. Though precipitation deficits over some period of time are a prerequisite for drought, their presence alone is unlikely to lead to flash drought because a lack of precipitation is only one of several factors that contribute to rapid drought development. When below normal precipitation occurs alongside other extreme weather anomalies such as intense heat that enhance atmospheric evaporative demand, their co-occurrence can lead to a rapid depletion of root zone soil moisture content due to increased evapotranspiration. This in turn can lead to a rapid increase in vegetation moisture stress and the onset of flash drought conditions.</p><p>Several recent studies have used quantitative definitions based on rapid changes in a given drought monitoring dataset to identify flash droughts in the climatological record. Here, we build upon these recent studies by developing a new flash drought intensity index that accounts not only for their rapid rate of intensification, but also for how severe the drought conditions become during and after the period of rapid intensification. The method includes two components that together capture the suddenness of flash drought development (faster intensification corresponds to a more severe flash drought) and the actual drought severity after the rapid intensification period ends (severe drought conditions lasting for a longer period correspond to a more severe flash drought). The motivation behind this method is the desire to account for both the “flash” and “drought” aspects of flash drought because both of these characteristics influence how people view flash droughts. Thus, a metric that considers both of these aspects provides a more comprehensive assessment of flash drought intensity and its impacts on the environment. In this talk, we will present the proposed flash drought intensity index methodology, along with results from individual case studies and a 40-year climatology to illustrate its use.</p>


2020 ◽  
Author(s):  
Alexandra Nauditt ◽  
Kerstin Stahl ◽  
Erasmo Rodríguez ◽  
Christian Birkel ◽  
Rosa Maria Formiga-Johnsson ◽  
...  

Abstract. Droughts are causing severe damages to water abundant tropical countries worldwide. Their resilience to water shortages tends to be low, often due to a lack of water infrastructure. Moreover, drought characteristics and risk in tropical catchments are poorly understood, which makes it difficult to select adequate adaptation measures. Thus, reliable methodologies to evaluate spatially distributed drought risk in data scarce tropical catchments are urgently needed. We combined drought hazard and vulnerability related information to assess drought risk in four rural tropical study regions, the Muriaé, subcatchment of the Paraíba do Sul in Southeast Brazil, the Tempisque-Bebedero in North Costa Rica, the upper part of the Magdalena basin, Colombia and the Srepok, a Mekong tributary shared by Cambodia and Vietnam. Drought hazard was defined based on three variables, daily river discharge and precipitation and vegetation condition. Conditions below defined thresholds were transformed into a cumulative drought index. To assess vulnerability, we reclassified and weighted globally and regionally available gridded socioeconomic data to represent the potential of a drought to cause damages in selected socioeconomic sectors of rural tropical regions. Besides illustrating the relative severity of each indicator value, we developed drought risk maps combining hazard and vulnerability severity for each grid cell. While for the Muriaé our results clearly identified the downstream area as being exposed to severe drought risk, the Tempisque showed highest risk along the major streams and related irrigation systems. Risk hotspots in the Upper Magdalena were found in the central valley and the dryer Southeast and in the Srepok in the agricultural areas of Vietnam and downstream in Cambodia. Plausibility of results was confirmed by local scientists and stakeholders, who evaluated the results for each indicator and risk hotspot. The presented risk assessment methodology for data scarce and rural tropical areas offers a holistic, science based and innovative solution to provide relevant drought related information. Being applied to individual catchments, the findings described in this article will enable the selection of data sets, indices and their classification - depending on basin size, spatial resolution and seasonality. At its current stage, the outcomes of this study provide relevant information for regional planners and water managers dealing with the control of future drought disasters in tropical regions.


Sign in / Sign up

Export Citation Format

Share Document