scholarly journals Microbiome Forensic Biobanking: A Step toward Microbial Profiling for Forensic Human Identification

Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1371
Author(s):  
Luciana Caenazzo ◽  
Pamela Tozzo

In recent years many studies have highlighted the great potential of microbial analysis in human identification for forensic purposes, with important differences in microbial community composition and function across different people and locations, showing a certain degree of uncertainty. Therefore, further studies are necessary to enable forensic scientists to evaluate the risk of microbial transfer and recovery from various items and to further critically evaluate the suitability of current human DNA recovery protocols for human microbial profiling for identification purposes. While the establishment and development of microbiome research biobanks for clinical applications is already very structured, the development of studies on the applicability of microbiome biobanks for forensic purposes is still in its infancy. The creation of large population microbiome biobanks, specifically dedicated to forensic human identification, could be worthwhile. This could also be useful to increase the practical applications of forensic microbiology for identification purposes, given that this type of evidence is currently absent from most real casework investigations and judicial proceedings in courts.

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1015 ◽  
Author(s):  
Ana Neckovic ◽  
Roland A. H. van Oorschot ◽  
Bianca Szkuta ◽  
Annalisa Durdle

The human microbiome is comprised of the microbes that live on and within an individual, as well as immediately surrounding them. Microbial profiling may have forensic utility in the identification or association of individuals with criminal activities, using microbial signatures derived from a personal microbiome. This review highlights some important aspects of recent studies, many of which have revealed issues involving the effect of contamination of microbial samples from both technical and environmental sources and their impacts on microbiome research and the potential forensic applications of microbial profiling. It is imperative that these challenges be discussed and evaluated within a forensic context to better understand the future directions and potential applications of microbial profiling for human identification. It is necessary that the limitations identified be resolved prior to the adoption of microbial profiling, or, at a minimum, acknowledged by those applying this new approach.


2003 ◽  
Vol 69 (1) ◽  
pp. 483-489 ◽  
Author(s):  
Steven D. Siciliano ◽  
James J. Germida ◽  
Kathy Banks ◽  
Charles W. Greer

ABSTRACT The purpose of this study was to investigate the mechanism by which phytoremediation systems promote hydrocarbon degradation in soil. The composition and degradation capacity of the bulk soil microbial community during the phytoremediation of soil contaminated with aged hydrocarbons was assessed. In the bulk soil, the level of catabolic genes involved in hydrocarbon degradation (ndoB, alkB, and xylE) as well as the mineralization of hexadecane and phenanthrene was higher in planted treatment cells than in treatment cells with no plants. There was no detectable shift in the 16S ribosomal DNA (rDNA) composition of the bulk soil community between treatments, but there were plant-specific and -selective effects on specific catabolic gene prevalence. Tall Fescue (Festuca arundinacea) increased the prevalence of ndoB, alkB, and xylE as well as naphthalene mineralization in rhizosphere soil compared to that in bulk soil. In contrast, Rose Clover (Trifolium hirtum) decreased catabolic gene prevalence and naphthalene mineralization in rhizosphere soil. The results demonstrated that phytoremediation systems increase the catabolic potential of rhizosphere soil by altering the functional composition of the microbial community. This change in composition was not detectable by 16S rDNA but was linked to specific functional genotypes with relevance to petroleum hydrocarbon degradation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0232101
Author(s):  
Robert A. Sellers ◽  
David L. Robertson ◽  
May Tassabehji

Autism susceptibility candidate 2 (AUTS2) is a neurodevelopmental regulator associated with an autosomal dominant intellectual disability syndrome, AUTS2 syndrome, and is implicated as an important gene in human-specific evolution. AUTS2 exists as part of a tripartite gene family, the AUTS2 family, which includes two relatively undefined proteins, Fibrosin (FBRS) and Fibrosin-like protein 1 (FBRSL1). Evolutionary ancestors of AUTS2 have not been formally identified outside of the Animalia clade. A Drosophila melanogaster protein, Tay bridge, with a role in neurodevelopment, has been shown to display limited similarity to the C-terminal of AUTS2, suggesting that evolutionary ancestors of the AUTS2 family may exist within other Protostome lineages. Here we present an evolutionary analysis of the AUTS2 family, which highlights ancestral homologs of AUTS2 in multiple Protostome species, implicates AUTS2 as the closest human relative to the progenitor of the AUTS2 family, and demonstrates that Tay bridge is a divergent ortholog of the ancestral AUTS2 progenitor gene. We also define regions of high relative sequence identity, with potential functional significance, shared by the extended AUTS2 protein family. Using structural predictions coupled with sequence conservation and human variant data from 15,708 individuals, a putative domain structure for AUTS2 was produced that can be used to aid interpretation of the consequences of nucleotide variation on protein structure and function in human disease. To assess the role of AUTS2 in human-specific evolution, we recalculated allele frequencies at previously identified human derived sites using large population genome data, and show a high prevalence of ancestral alleles, suggesting that AUTS2 may not be a rapidly evolving gene, as previously thought.


2020 ◽  
Author(s):  
Huisheng Peng ◽  
Xiang Shi ◽  
Yong Zuo ◽  
Peng Zhai ◽  
Jiahao Shen ◽  
...  

Abstract Displays are basic building blocks of modern electronics1,2. Integrating displays into textiles offers exciting opportunities for smart electronic textiles – the ultimate form of wearables poised to change the way we interact with electronic devices3-6. Display textiles serve to bridge human-machine interactions7-9, offering for instance, a real-time communication tool for individuals with voice or speech disorders. Electronic textiles capable of communicating10, sensing11,12 and supplying electricity13,14 have been reported previously. However, textiles with functional, large-area displays have not been achieved so far because obtaining small illuminating units that are both durable and easy to assemble over a wide area is challenging. Here, we report a 6 m (L) * 25 cm (W) display textile containing 500000 electroluminescent (EL) units narrowly spaced to ~800 μm. Weaving conductive weft and luminescent warp fibres forms micron-scale EL units at the weft-warp contact points. Brightness between EL units deviates by < 6.3% and remains stable even when the textile is bent, stretched or pressed. We attribute this uniform and stable lighting to the smooth luminescent coating around the warp fibres and homogenous electric field distribution at the contact points. Our display textile is flexible and breathable and withstands repeatable machine-washing, making them suitable for practical applications. We show an integrated textile system consisting of display, keyboard and power supply can serve as a communication tool, which could potentially drive the Internet of Things in various areas including healthcare. Our approach unifies the fabrication and function of electronic devices with textiles, and we expect weaving fibre materials to shape the next-generation electronics.


Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.


2009 ◽  
Vol 30 (2) ◽  
pp. 78
Author(s):  
Nicole S Webster ◽  
David G Bourne ◽  
Linda L Blackall

Microbes constitute the largest diversity and biomass of all marine organisms, yet they are often ignored during discussions about the impacts of environmental change. This is despite the fact that, of all the organisms on the planet, it is the microbes that will play the largest fundamental role in either mitigating or exacerbating the effects of global climate change. Microbes will also be the first and fastest to shift their metabolic capabilities, host range, function and community dynamics as a result of climate change. Therefore, an understanding of microbial community composition and function in individual niche habitats is vital.


2020 ◽  
Vol 8 (6) ◽  
pp. 808 ◽  
Author(s):  
André C. Pereira ◽  
Victor Bandeira ◽  
Carlos Fonseca ◽  
Mónica V. Cunha

Recently, we unveiled taxonomical and functional differences in Egyptian mongoose (Herpestes ichneumon) gut microbiota across sex and age classes by microbial profiling. In this study, we generate, through culturomics, extended baseline information on the culturable bacterial and fungal microbiome of the species using the same specimens as models. Firstly, this strategy enabled us to explore cultivable microbial community differences across sexes and to ascertain the influence exerted by biological and environmental contexts of each host in its microbiota signature. Secondly, it permitted us to compare the culturomics and microbial profiling approaches and their ability to provide information on mongoose gut microbiota. In agreement with microbial profiling, culturomics showed that the core gut cultivable microbiota of the mongoose is dominated by Firmicutes and, as previously found, is able to distinguish sex- and age class-specific genera. Additional information could be obtained by culturomics, with six new genera unveiled. Richness indices and the Shannon index were concordant between culture-dependent and culture-independent approaches, highlighting significantly higher values when using microbial profiling. However, the Simpson index underlined higher values for the culturomics-generated data. These contrasting results were due to a differential influence of dominant and rare taxa on those indices. Beta diversity analyses of culturable microbiota showed similarities between adults and juveniles, but not in the data series originated from microbial profiling. Additionally, whereas the microbial profiling indicated that there were several bioenvironmental features related to the bacterial gut microbiota of the Egyptian mongoose, a clear association between microbiota and bioenvironmental features could not be established through culturomics. The discrepancies found between the data generated by the two methodologies and the underlying inferences, both in terms of β-diversity and role of bioenvironmental features, confirm that culture-independent, sequence-based methods have a higher ability to assess, at a fine scale, the influence of abiotic and biotic factors on the microbial community composition of mongoose’ gut. However, when used in a complementary perspective, this knowledge can be expanded by culturomics.


2020 ◽  
Author(s):  
Alla Usyskin-Tonne ◽  
Yitzhak Hadar ◽  
Uri Yermiyahu ◽  
Dror Minz

AbstractElevated CO2 stimulates plant growth and affects quantity and composition of root exudates, followed by response of its microbiome. Three scenarios representing nitrate fertilization regimes: limited (30 ppm), moderate (70 ppm) and excess nitrate (100 ppm) were compared under ambient and elevated CO2 (eCO2, 850 ppm) to elucidate their combined effects on root-surface-associated bacterial community abundance, structure and function. Wheat root-surface-associated microbiome structure and function, as well as soil and plant properties, were highly influenced by interactions between CO2 and nitrate levels. Relative abundance of total bacteria per plant increased at eCO2 under excess nitrate. Elevated CO2 significantly influenced the abundance of genes encoding enzymes, transporters and secretion systems. Proteobacteria, the largest taxonomic group in wheat roots (~ 75%), is the most influenced group by eCO2 under all nitrate levels. Rhizobiales, Burkholderiales and Pseudomonadales are responsible for most of these functional changes. A correlation was observed among the five gene-groups whose abundance was significantly changed (secretion systems, particularly type VI secretion system, biofilm formation, pyruvate, fructose and mannose metabolism). These changes in bacterial abundance and gene functions may be the result of alteration in root exudation at eCO2, leading to changes in bacteria colonization patterns and influencing their fitness and proliferation.


Sign in / Sign up

Export Citation Format

Share Document