scholarly journals On the Thermal Resilience of Venetian Open Spaces

Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 4286-4303
Author(s):  
Barbara Gherri ◽  
Daniela Maiullari ◽  
Chiara Finizza ◽  
Marco Maretto ◽  
Emanuele Naboni

Venice is known for its urban heritage fragility. The city is experiencing an increase in yearly average temperatures affecting outdoor–indoor comfort and average energy expenditure. Owing to existing literature demonstrating how local microclimate depends on urban density, form, and materials, this investigation studies the influence of the changing local climate on Venetian vernacular open spaces, known as Campi. Based on the comparison of contemporary weather and the Intergovernmental Panel on Climate Change’s (IPCC) future predictions for the 2050 scenario, this investigation highlights how Campi’s open spaces and the surrounding buildings, canals, and green public areas contribute to building climate resilience. By employing advanced modelling, the study analyses microclimate and outdoor comfort with respect to users’ perception of Physiological Equivalent Temperature (PET). The ENVI-met tool is used to simulate the thermal behaviour of two representative Campi: SS. Giovanni e Paolo and S. Polo. Despite significant temperature growths, Venetian urban fabric characteristics seem to play a crucial role in strengthening the climate resilience of open spaces, thus preserving outdoor comfort quality in a warmer future. The analysis shows how the historical matrix of open spaces and buildings cooperate. Thus, this study offers a contribution to how built heritage should be considered in light of climate change.

Author(s):  
Pardeep Kumar ◽  
Amit Sharma

Outdoor thermal comfort (OTC) promotes the usage frequency of public places, recreational activities, and people's wellbeing. Despite the increased interest in OTC research in the past decade, less attention has been paid to OTC research in cold weather, especially in arid regions. The present study investigates the OTC conditions in open spaces at the campus area in the arid region. The study was conducted by using subjective surveys(questionnaire) and onsite monitoring (microclimate parameters). The study was conducted at the Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana-India campus during the cold season of 2019. The timings of surveys were between 9:00 and 17:00 hours. The authors processed the 185 valid questionnaire responses of the respondents to analyze OTC conditions. Only 8.6% of the respondents marked their perceived sensation "Neutral." Regression analysis was applied between respondents' thermal sensations and microclimate parameters to develop the empirical thermal sensation model. The air temperature was the most dominant parameter affecting the sensations of the respondents. The empirical model indicated that by increasing air temperature, relative humidity, and solar radiation, the thermal sensations also increased while wind speed had an opposite effect. Physiological equivalent temperature (PET) was applied for assessing the OTC conditions; the neutral PET range was found to be 18.42-25.37°C with a neutral temperature of 21.89°C. The preferred temperature was 21.99 °C by applying Probit analysis. The study's findings could provide valuable information in designing and planning outdoor spaces for educational institutions in India's arid regions


2021 ◽  
Vol 21 (2) ◽  
pp. 10-18
Author(s):  
Pitiwat Wattanachai ◽  
Chawanat Sundaranaga ◽  
Thidarat Kridakorn Na Ayutthaya ◽  
Non Phichetkunbodee ◽  
Damrongsak Rinchumphu

A lower external temperature increases comfort and reduces the chance of heat stress; it can be impacted by the density of the urban area, and this is an important issue for the residents in housing estate developments. Therefore, to sustainably reduce this issue, the external temperature is important to manage for urban public spaces’ development. This article reports the results of studies on increasing thermal comfort in public areas by adding different types of shading into computer programs, Rhinoceros and Grasshopper, to calculate the Universal Thermal Comfort Index (UTCI). Increasing the outdoor comfort can be done by adding shaded areas via large trees that can result in thermal reduction and humidity increase, but they do not obstruct air circulation. The result can be used as a guideline for the design of public spaces in housing estates to meet the outdoor comfort efficiently and support the users’ expectations.


2019 ◽  
Vol 29 (5) ◽  
pp. 730-745 ◽  
Author(s):  
Chunjing Shang ◽  
Xinyu Huang ◽  
Yufeng Zhang ◽  
Maoquan Chen

Considering the importance of thermal comfort in decision-making in tourism, a transverse study involving micrometeorological measurements and questionnaires was performed at a popular coastal destination during the seasons of spring, autumn and winter. We examined the thermal sensation and thermal acceptability using the physiological equivalent temperature (PET). The results indicate that tourists’ thermal sensations varied with the season and the neutral PETs were 19.2°C, 23.8°C and 23.3°C in winter, spring and autumn. The 90% acceptable ranges of the PET affected by the local climate were 19.6–29.5°C during the entire three-season survey period, 21.4–27.1°C in the spring, 19.2–32°C in the autumn and more than 15.9°C in the winter. The analysis of microclimate parameters that affect thermal comfort in three seasons reveals that people expected weaker solar radiation, stronger wind and lower humidity with the air temperature rising, and vice versa. The acceptable range of wind speed was 0.6–2.5 m/s in winter, 0.6–3.5 m/s in spring and autumn. The acceptable range of solar radiation was 0–150 W/m2 in autumn and 0–250 W/m2 in winter. These findings contribute to the better designs for coastal facilities and the thermal comfort of tropical areas.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1456
Author(s):  
Robert Sitzenfrei ◽  
Manfred Kleidorfer ◽  
Peter M. Bach ◽  
Taneha Kuzniecow Bacchin

Urban water systems face severe challenges such as urbanisation, population growth and climate change. Traditional technical solutions, i.e., pipe-based, grey infrastructure, have a single purpose and are proven to be unsustainable compared to multi-purpose nature-based solutions. Green Infrastructure encompasses on-site stormwater management practices, which, in contrast to the centralised grey infrastructure, are often decentralised. Technologies such as green roofs, walls, trees, infiltration trenches, wetlands, rainwater harvesting and permeable pavements exhibit multi-functionality. They are capable of reducing stormwater runoff, retaining stormwater in the landscape, preserving the natural water balance, enhancing local climate resilience and also delivering ecological, social and community services. Creating multi-functional, multiple-benefit systems, however, also warrants multidisciplinary approaches involving landscape architects, urban planners, engineers and more to successfully create a balance between cities and nature. This Special Issue aims to bridge this multidisciplinary research gap by collecting recent challenges and opportunities from on-site systems up to the watershed scale.


Climate ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 65 ◽  
Author(s):  
Gisele S. Barbosa ◽  
Patricia R. C. Drach ◽  
Oscar D. Corbella

The idea of compact cities is attracting enthusiasts, and some have proposed sustainable options for its implementation. This concept is based on planning for higher density cities with efficient connectivity in their structures. Because climatic characteristics are one of the basic factors to consider when planning a town, the models imported from different climates of Brazil must be intensely scrutinized and analyzed for their adequacy and effectiveness. Previous studies have revealed the inadequacy of the compact city model for tropical countries. In this study, the Copacabana neighborhood in Rio de Janeiro, a city that is currently compact, was assessed using computational tools (ENVI-met) to observe the intraurban temperature dynamics and sky view factor (SVF) alterations at three time-points’ unit occupation history: 1930, 1950, and 2018. To determine the effects of morphological changes on thermal sensation, two outdoor comfort indexes were calculated: the physiological equivalent temperature (PET) and the universal thermal climate (UTCI). From the obtained results, the relationship between urban morphology, air temperature, and thermal comfort indicates that the debate about urban models will be heightened, particularly with regard to the concept of compact cities in the formation of new cities and neighborhoods in the tropics.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1013
Author(s):  
Max Anjos ◽  
António Lopes ◽  
Andrews José de Lucena ◽  
Francisco Mendonça

Characterizing the behaviour of the sea breeze phenomenon is the foremost factor in the reduction in the heat stress and the achievement of the pleasant environment in coastal cities globally. However, this seminal study shows that the Sea Breeze Front (SBF) development can be related to an increase in outdoor thermal discomfort in a northeastern Brazilian city during summer. We explored the relationship between SBF and thermal comfort conditions using in situ meteorological observations, the SBF identification method, local climate zones (LCZs) classification, and the Physiological Equivalent Temperature (PET) thermal comfort index. SBF days and Non-SBF days were characterized in terms of weather conditions, combining meteorological data and technical bulletins. SBF days included hot and sunny days associated with the centre of the Upper Tropospheric Cyclonic Vortices (UTCV). In contrast, Non-SBF days were observed in UTCV’s periphery because of cloudy sky and rainfall. The results showed that the mean temperature and PET in the SBF days were 2.0 °C and 3.8 °C higher, respectively, compared to Non-SBF days in all LCZ sites. The highest PET, of 40.0 °C, was found on SBF days. Our findings suggest that SBF development could be an aggravating factor for increasing heat stress of the people living in the northeastern coast of the Brazilian city, after SBF passage.


2019 ◽  
Author(s):  
◽  
Lisa Groshong

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Missouri's outdoor recreation resources provide numerous mental, physical, and social values to millions of people each year and serve as a major contributor to the statewide economy. However, climate change threatens these benefits. This project sought to explore climate change perceptions and place attachment of outdoor enthusiasts in Missouri as a step toward managing natural and cultural resources for ongoing climate resilience. This study used interviews and a statewide visitor survey to measure climate change impacts on visitors to Missouri's state parks and historic sites. The dissertation is formatted in three manuscripts. The first manuscript assessed how engaged state park users perceive climate change impacts and what they view as the agency role in climate change mitigation, education, and communication. The second manuscript identified health concerns related to climate change and examined how these concerns affect park use. The final manuscript examined the role of place attachment in determining visitors' willingness to engage in climate friendly behavior and support for management action to minimize climate-change impacts. Overall findings suggested climate-change related management challenges and provided evidence for visitor support for education and action. Opportunities were identified for state park managers to take action toward locally-oriented climate change mitigation, education and communication. Place attachment dimensions were affirmed as tools for engaging visitors in climate-related actions, both in and beyond park settings.


2016 ◽  
Vol 8 (2) ◽  
pp. 30 ◽  
Author(s):  
Micah J. Hewer ◽  
William A. Gough

Weather and climate have been widely recognised as having an important influence on tourism and recreational activities. However, the nature of these relationships varies depending on the type, timing and location of these activities. Climate change is expected to have considerable and diverse impacts on recreation and tourism. Nonetheless, the potential impact of climate change on zoo visitation has yet to be assessed in a scientific manner. This case study begins by establishing the baseline conditions and statistical relationship between weather and zoo visitation in Toronto, Canada. Regression analysis, relying on historical weather and visitation data, measured at the daily time scale, formed the basis for this analysis. Climate change projections relied on output produced by Global Climate Models (GCMs) for the Intergovernmental Panel on Climate Change’s 2013 Fifth Assessment Report, ranked and selected using the herein defined Selective Ensemble Approach. This seasonal GCM output was then used to inform daily, local, climate change scenarios, generated using Statistical Down-Scaling Model Version 5.2. A series of seasonal models were then used to assess the impact of projected climate change on zoo visitation. While accounting for the negative effects of precipitation and extreme heat, the models suggested that annual visitation to the zoo will likely increase over the course of the 21st century due to projected climate change: from +8% in the 2020s to +18% by the 2080s, for the least change scenario; and from +8% in the 2020s to +34% in the 2080s, for the greatest change scenario. The majority of the positive impact of projected climate change on zoo visitation in Toronto will likely occur in the shoulder season (spring and fall); with only moderate increases in the off season (winter) and potentially negative impacts associated with the peak season (summer), especially if warming exceeds 3.5 °C.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 498 ◽  
Author(s):  
O. Demiroglu ◽  
C. Hall

In late 2019, the Intergovernmental Panel on Climate Change (IPCC) released their much-awaited Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC). High mountain areas, polar regions, low-lying islands and coastal areas, and ocean and marine ecosystems, were separately dealt by experts to reveal the impacts of climate change on these regions, as well as the responses of the natural and human systems inhabiting or related to these regions. The tourism sector was found, among the main systems, influenced by climate change in the oceanic and cryospheric environments. In this study, we deepen the understanding of tourism and climate interrelationships in the polar regions. In doing so, we step outside the climate resilience of polar tourism paradigm and systematically assess the literature in terms of its gaps relating to an extended framework where the impacts of tourism on climate through a combined and rebound effects lens are in question as well. Following a systematic identification and screening on two major bibliometric databases, a final selection of 93 studies, spanning the 2004–2019 period, are visualized in terms of their thematic and co-authorship networks and a study area based geobibliography, coupled with an emerging hot spots analysis, to help identify gaps for future research.


Sign in / Sign up

Export Citation Format

Share Document