scholarly journals Non-Destructive In Situ Investigation of the Study of a Medieval Copper Alloy Door in Canosa di Puglia (Southern Italy)

Heritage ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 145-156
Author(s):  
Giovanni Buccolieri ◽  
Alfredo Castellano ◽  
Vito Nicola Iacobelli ◽  
Giorgio Giuseppe Carbone ◽  
Antonio Serra ◽  
...  

This paper reports the analyses carried out on the medieval copper alloy door (1111–1118 AD) of the mausoleum of Boemondo d’Altavilla in Canosa di Puglia (Southern Italy). The studied door is the smallest medieval bronze door extant in Italy and, unlike the other Byzantine doors, was most probably made in Canosa di Puglia and not in Constantinople. Analyses were performed to assess the chemical composition of the alloy patinas using a portable energy dispersive X-ray fluorescence (ED-XRF) instrument designed at the University of Salento. The experimental results suggested that the two door leaves have the same chemical composition, even if they appear different in both style and size. Furthermore, the alloy used for the door is different from the other previously-analyzed Byzantine bronze doors. The obtained results can be used in the future to compare the chemical composition of other Byzantine doors in order to better understand the manufacture of these precious artifacts.

2020 ◽  
Vol 230 ◽  
pp. 00012
Author(s):  
Valentina Venuti ◽  
Vincenza Crupi ◽  
Barbara Fazio ◽  
Giuseppe Paladini ◽  
Mauro Francesco La Russa ◽  
...  

In this study a multi-technique analysis was performed on the decorated surfaces of four ancient pottery fragments dated back XIX century A.D. withdrawn from the archaeological site of the medieval Agsu town, in Azerbaijan. During the last decade, the site underwent to an extensively archaeometric investigation by means of different non-destructive, or micro-destructive, techniques. In this work we focused our attention on the characterization of the pigmenting agents and glazes at different spatial scales from elemental to microscopic domain by using portable and not-portable equipments. In particular, the elemental and molecular compositions were successfully determined by X-ray fluorescence (XRF) and Raman spectroscopy, respectively. On one side, data deriving from portable instrument were compared with those previously obtained from not-portable approach, in view of future in situ investigations. On the other side, the overall obtained results appear crucial for the reconstruction of the production technology used by craftsman of the past.


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2028-2038 ◽  
Author(s):  
Fauzia Albertin ◽  
Matteo Bettuzzi ◽  
Rosa Brancaccio ◽  
Maria Pia Morigi ◽  
Franco Casali

X-ray Computed Tomography (X-ray CT) is a sophisticated non-destructive imaging technique to investigate structures and materials of complex objects, and its application can answer many conservation and restoration questions. However, for Cultural Heritage investigations, medical CT scanners are not optimized for many case-studies: These instruments are designed for the human body, are not flexible and are difficult to use in situ. To overcome these limitations and to safely investigate works of art on site—in a restoration laboratory or in a museum—the X-ray Tomography Laboratory of the University of Bologna designed several CT systems. Here we present two of these facilities and the results of important measurement campaigns performed in situ. The first instrument, light and flexible, is designed to investigate medium-size objects with a resolution of a few tens of microns and was used for the CT analysis of several Japanese theater masks belonging to the collection of the “L. Pigorini” Museum (Rome). The second is designed to analyze larger objects, up to 200 cm and was used to investigate the collection of the so-called “Statue Vestite” (devotional dressed statues) of the Diocesan Museum of Massa.


2017 ◽  
Vol 32 (1) ◽  
pp. 117-129 ◽  
Author(s):  
R. Alberti ◽  
V. Crupi ◽  
R. Frontoni ◽  
G. Galli ◽  
M. F. La Russa ◽  
...  

A variety of fragments of frescoes coming from the Villa dei Quintili in Rome and dating back to the II century A.D. were subjected to, first of all, an X-ray fluorescence (XRF) analysis by optimizing a portable spectrometer for non-destructive investigation in the field of cultural heritage.


2004 ◽  
Vol 467-470 ◽  
pp. 81-86 ◽  
Author(s):  
A.W. Larsen ◽  
C. Gundlach ◽  
Henning Friis Poulsen ◽  
L. Margulies ◽  
Q. Xing ◽  
...  

A new method for in-situ studies of nucleation in bulk metals based on high energy synchrotron radiation is presented. Copper samples cold rolled 20% are investigated. The crystallographic orientations near triple junctions are characterized using non-destructive 3DXRD microscopy before, during, and after annealing for 1 hour at 290°C. This method allows in-situ identification of new nuclei and the deformed material, which spawns the nuclei. Also, since data is acquired during annealing nucleation kinetics can be studied.


2017 ◽  
Vol 72 (6) ◽  
pp. 355-364
Author(s):  
A. Kopp ◽  
T. Bernthaler ◽  
D. Schmid ◽  
G. Ketzer-Raichle ◽  
G. Schneider

2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


Sign in / Sign up

Export Citation Format

Share Document