scholarly journals Long-Term Hydrological Regime Monitoring of a Mediterranean Agro-Ecological Wetland Using Landsat Imagery: Correlation with the Water Renewal Rate of a Shallow Lake

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 172
Author(s):  
Lucía Vera-Herrera ◽  
Juan Soria ◽  
Javier Pérez ◽  
Susana Romo

The Natural Park of Albufera (Valencia, Spain) is one of the Spanish Mediterranean wetlands where rice is cultivated intensively. The hydrology of the Albufera Lake, located in the center, combines natural contributions with complex human management. The aim of our study was to develop a new methodology to accurately detect the volume of flood water in complex natural environments which experience significant seasonal changes due to climate and agriculture. The study included 132 Landsat images, covering a 15-year period. The algorithm was adjusted using the NDWI index and simultaneous measurements of water levels in the rice fields. The NDVI index was applied to monitor the cultivated area during the summer. Lake inflows and residence times were also evaluated to quantify how the hydrodynamic of the lake is conditioned by the agricultural management. The algorithm developed is confirmed as a useful ecological tool to monitor the flood cycle of the wetland, being able to detect even the lowest water levels. The flood dynamics are consistent over the fifteen years, being in line with the rice cultivation cycle. Water renewal in Albufera lake is altered with respect to that expected according to the rainfall recorded in the study area, so an improvement in the water management of the hydrological basin is required to optimize the runoff during the rainiest months.

Author(s):  
J. Aouissi ◽  
Z. L. Chabaane ◽  
S. Benabdallah ◽  
C. Cudennec

Abstract. The impact of changes in agricultural land use and practices as a controlling driver of hydrologic response and as a source of diffuse pollution, are studied in the Joumine River basin, discharging into the Ichkeul Lake, northern Tunisia, a UNESCO World Heritage site since 1979. The lake is characterized by a very specific hydrological functioning based on a seasonal alternation of water levels and salinity through its link to the Mediterranean Sea. Three Landsat images, in situ surveys and SWAT modelling were used to simulate and assess streamflows and nitrate loads under retrospective land uses.


2019 ◽  
Vol 36 ◽  
pp. 1-5
Author(s):  
Moacyr Serafim-Júnior ◽  
Gilmar Perbiche-Neves ◽  
Fabio Lansac-Toha

Zooplankton exhibit several trends of variation in space and time, and these trends can be more evident in natural environments without anthropic perturbations. Examples of anthropic factors are climate change, eutrophication and construction of reservoirs. This study evaluated the influence of three factors – seasonality, type of environment and the presence of aquatic macrophytes – on various ecological attributes of rotifers in a river-lake system located in the Paraná River floodplain. Monthly samplings were conducted during 1993 and 1994. The mean species richness per sample was 60 species. The seasonality and the type of environment influenced the ecological attributes of rotifer assemblages, while the presence or absence of aquatic macrophytes did not. Species richness was highest in the lake system and during the months when water levels were low. Multivariate analysis indicates a small group of species associated with the low water-level phase. In contrast, many species were associated with high water levels or increasing water levels. The seasonal variation of hydrological cycle and the type of environment are the most important factors for rotifer structure in natural conditions.


2006 ◽  
Vol 10 (1) ◽  
pp. 127-137 ◽  
Author(s):  
P. Wolski ◽  
M. Murray-Hudson

Abstract. The Okavango Delta is a flood-pulsed wetland, which supports a large tourism industry and the subsistence of the local population through the provision of ecosystem services. In order to obtain insight into the influence of various environmental factors on flood propagation and distribution in this system, an analysis was undertaken of a 30-year record of hydrometric data (discharges and water levels) from one of the Delta distributaries. The analysis revealed that water levels and discharges at any given channel site in this distributary are influenced by a complex interplay of flood wave and local rainfall inputs, modified by channel-floodplain interactions, in-channel sedimentation and technical interventions, both at the given site and upstream. Additionally, cyclical variation of channel vegetation due to intermittent nutrient loading, possibly sustained by nutrient recycling, may play a role. It is shown that short and long-term flood dynamics are mainly due to variation in floodplain flows. As a consequence, discharge data collected within the main channels of distributaries do not adequately represent flooding dynamics in the system. The paper contributes to the understanding of seasonal and long-term flood pulsing and their variation in low gradient systems of channels and floodplains.


2018 ◽  
Vol 162 ◽  
pp. 03016
Author(s):  
Alaa Dawood ◽  
Yousif Kalaf ◽  
Nagham Abdulateef ◽  
Mohammed Falih

Water level and distribution is very essential in almost all life aspects. Natural and artificial lakes represent a large percentage of these water bodies in Iraq. In this research the changes in water levels are observed by calculating the areas of five different lakes in five different regions and two different marshes in two different regions of the country, in a period of 12 years (2001 - 2012), archived remotely sensed images were used to determine surface areas around lakes and marshes in Iraq for the chosen years . Level of the lakes corresponding to satellite determined surface areas were retrieved from remotely sensed data .These data were collected to give explanations on lake level and surface area fluctuations. It is important to determine these areas at different water levels to know areas which are being flooded in addition to the total area inundated .The behavior of hydrological regime of these lakes during the period was assessed using an integration of remote sensing and GIS techniques which found that the total surface area of the lakes had diminished and their water volumes reduced. The study further revealed that the levels of the lakes surfaces had lowered through these years.


2019 ◽  
Vol 11 (10) ◽  
pp. 1164
Author(s):  
Bei Li ◽  
Yi-Chi Zhang ◽  
Ping Wang ◽  
Chao-Yang Du ◽  
Jing-Jie Yu

Quantifying terminal-lake dynamics is crucial for understanding water-ecosystem-economy relationship across endorheic river basins in arid environments. In this study, the spatio-temporal variations in terminal lakes of the lower Heihe River Basin were investigated for the first time since the Ecological Water Diversion Project commenced in 2000. The lake area and corresponding water consumption were determined with 248 Landsat images. Vital recovery of lakes occurred two years after the implementation of the project, and the total lake area increased by 382.6%, from 30.7 to 148.2 km2, during 2002–2017. East Juyan Lake (EJL) was first restored as a project target and subsequently reached a maximum area of 70.1 km2. Water dispersion was initiated in 2003, with the East river prioritized for restoration. Swan Lake in the East river enlarged to 67.7 km2 by 2017, while the other four lakes temporarily existed or maintained an area < 7 km2, such as West Juyan Lake. Water consumed by lakes increased synchronously with lake area. The average water consumption of the six lakes was 1.03 × 108 m3/year, with 63% from EJL. The increasing terminal lakes; however, highlight the seasonal competition for water use between riparian vegetation and lake ecosystems in water-limited areas.


2017 ◽  
Vol 23 (1) ◽  
pp. 55-71 ◽  
Author(s):  
Yang Xiao ◽  
Zhiyun Ouyang ◽  
Zhiming Zhang ◽  
Chaofan Xian

The quality of Landsat images in humid areas is considerably degraded by haze in terms of their spectral response pattern, which limits the possibility of their application in using visible and near-infrared bands. A variety of haze removal algorithms have been proposed to correct these unsatisfactory illumination effects caused by the haze contamination. The purpose of this study was to illustrate the difference of two major algorithms (the improved homomorphic filtering (HF) and the virtual cloud point (VCP)) for their effectiveness in solving spatially varying haze contamination, and to evaluate the impacts of haze removal on land cover classification. A case study with exploiting large quantities of Landsat TM images and climates (clear and haze) in the most humid areas in China proved that these haze removal algorithms both perform well in processing Landsat images contaminated by haze. The outcome of the application of VCP appears to be more similar to the reference images compared to HF. Moreover, the Landsat image with VCP haze removal can improve the classification accuracy effectively in comparison to that without haze removal, especially in the cloudy contaminated area


2020 ◽  
Author(s):  
Jinxiu Liu

&lt;p&gt;Fire is recognized as an important land surface disturbance, as it influences terrestrial carbon cycle, climate and biodiversity. Accurate and efficient mapping of burned area is beneficial for social and environmental applications. Remote sensing plays a key role in detecting burned areas and active fires from reginal to global scales. Due to the free access to the Landsat archive, studies using dense time series of Landsat imagery for burned area mapping are appearing and increasing. However, the performance of Landsat time series when using different indices for burned area mapping has not been assessed. In this study, the objective was to identify which indices can detect burned area better when using Landsat time series in savanna area of southern Burkina Faso. We selected Burned Area Index (BAI), Normalized Burned Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Global Environmental Monitoring Index (GEMI) for comparison as they are commonly used indices for burned area detection. The algorithm was based on breakpoint identification and burned pixel detection using harmonic model fitting with different indices Landsat time series. It was tested in savanna area in southern Burkina Faso over 16 years with 281 Landsat images ranging from October 2000 to April 2016.The same reference data was used to evaluate the performance of burned area detection with different indices Landsat time series. The result demonstrated that BAI was the most accurate in burned area detection from Landsat time series, followed by NBR, GEMI and NDVI.&lt;/p&gt;


2005 ◽  
Vol 2 (5) ◽  
pp. 1865-1892 ◽  
Author(s):  
P. Wolski ◽  
M. Murray-Hudson

Abstract. The Okavango Delta is a flood-pulsed wetland, the resources of which support a large tourism industry and subsistence of the local population. In order to obtain an insight into the influence of various environmental factors on flood propagation and distribution in this system, an analysis was undertaken of a 30-year record of hydrometric data (discharges and water levels) from one of the Delta distributaries. The analysis revealed that water levels and discharges at any given channel site in the analysed distributary are influenced by a complex interplay of flood wave and local rainfall input modified by channel-floodplain interactions, in-channel sedimentation and technical interventions, both at the given site and upstream. Additionally, cyclical variation of channel margin vegetation due to nutrients recycling might play a role. It was shown that data from channels do not adequately represent flood dynamics and its change at the distributary level. The paper contributes to the understanding of seasonal and long-term flood pulsing and their changes in low gradient systems of channels and floodplains.


2011 ◽  
Vol 59 (3) ◽  
pp. 241-252 ◽  
Author(s):  
Débora Beigt ◽  
Diana G. Cuadrado ◽  
María C. Piccolo

This paper deals with the application of satellite images to study turbidity and water circulation patterns in San Blas channel during a theoretical tidal cycle. Eight Landsat TM and ETM images acquired under clear-sky conditions and representing different tidal stages were selected from a pool of Landsat images provided by the argentinean National Commission of Space Activities (CONAE) and the US Geological Survey. Standard digital image processing techniques were used to perform geometric and radiometric corrections on the visible and near-infrared bands. An image-based atmospheric correction (COST method by CHAVEZ, 1996) was applied. An ISODATA unsupervised classification was performed in order to identify different turbidity levels throughout the channel and adjacent areas. The results suggest that suspended sediment transport towards the channel mouth by ebb currents occurs along both flanks. These currents carry suspended sediment into the open sea, generating an ebb tidal delta which tends to rotate in a clockwise direction. Flood currents trigger turbidity mostly over the southern flank of the channel, generating a flood tidal delta with elongated banks extending in the direction of the tidal currents. From the elongated shape of the turbidity plumes, general tidal circulation patterns were identified.


Rangifer ◽  
2004 ◽  
Vol 24 (1) ◽  
pp. 31-50 ◽  
Author(s):  
Jérôme Théau ◽  
Claude R. Duguay

Habitat studies are essential in order to understand the dynamics of migratory caribou herds and to better define management strategies. In this paper, multi-date Landsat images are used to map lichen in the summer range of the George River Caribou Herd (GRCH), Québec-Labrador (Canada), over the period from 1976 to 1998. Multi-Spectral Scanner scenes from the seventies and Thematic Mapper scenes from the eighties and nineties were radiometrically normalized and processed using spectral mixture analysis to produce lichen fraction maps and lichen change maps. Field sites, surveyed during summer campaigns in 2000 and 2001, are used to validate the lichen maps. Results show a good agreement between field data and the lichen results obtained from image analysis. Maps are then interpreted in the context of previous caribou dynamics and habitat studies conducted in the study area over the last three decades. The remote-sensing results confirm the habitat degradation and herd distribution patterns described by other investigators. The period between 1976-1979 and 1985-1986 is characterized by a localized decrease in lichen cover in the southern part of the study area, whereas from 1985-1986 to 1998 the decrease in lichen cover extends northward and westward. This period coincides with the widest extent of the GRCH summer range and activity. The approach presented in this paper provides a valuable means for better understanding the spatio-temporal relation between herd dynamics and distribution, as well as habitat use. Satellite remote sensing imagery is a useful data source, providing timely information over vast and remote territories where caribou populations cannot be surveyed and managed on a frequent basis. 


Sign in / Sign up

Export Citation Format

Share Document