scholarly journals Using Heat as a Tracer to Detect the Development of the Recharge Bulb in Managed Aquifer Recharge Schemes

Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Esteban Caligaris ◽  
Margherita Agostini ◽  
Rudy Rossetto

Managed Aquifer Recharge (MAR), the intentional recharge of aquifers, has surged worldwide in the last 60 years as one of the options to preserve and increase water resources availability. However, estimating the extent of the area impacted by the recharge operations is not an obvious task. In this descriptive study, we monitored the spatiotemporal variation of the groundwater temperature in a phreatic aquifer before and during MAR operations, for 15 days, at the LIFE REWAT pilot infiltration basin using surface water as recharge source. The study was carried out in the winter season, taking advantage of the existing marked difference in temperature between the surface water (cold, between 8 and 13 °C, and in quasi-equilibrium with the air temperature) and the groundwater temperature, ranging between 10 and 18 °C. This difference in heat carried by groundwater was then used as a tracer. Results show that in the experiment the cold infiltrated surface water moved through the aquifer, allowing us to identify the development and extension in two dimensions of the recharge plume resulting from the MAR infiltration basin operations. Forced convection is the dominant heat transport mechanism. Further data, to be gathered at high frequency, and modeling analyses using the heat distribution at different depths are needed to identify the evolution of the recharge bulb in the three-dimensional space.

2003 ◽  
Vol 26 (4) ◽  
pp. 425-426
Author(s):  
James A. Schirillo

Collapsing three-dimensional space into two violates Lehar's “volumetric mapping” constraint and can cause the visual system to construct illusory transparent regions to replace voxels that would have contained illumination. This may underlie why color constancy is worse in two dimensions, and argues for Lehar to revise his phenomenal spatial model by putting “potential illumination” in empty space.


2018 ◽  
Author(s):  
Geoff Boeing

Models of street networks underlie research in urban travel behavior, accessibility, design patterns, and morphology. These models are commonly defined as planar, meaning they can be represented in two dimensions without any underpasses or overpasses. However, real-world urban street networks exist in three-dimensional space and frequently feature grade separation such as bridges and tunnels: planar simplifications can be useful but they also impact the results of real-world street network analysis. This study measures the nonplanarity of drivable and walkable street networks in the centers of 50 cities worldwide, then examines the variation of nonplanarity across a single city. It develops two new indicators - the Spatial Planarity Ratio and the Edge Length Ratio - to measure planarity and describe infrastructure and urbanization. While some street networks are approximately planar, we empirically quantify how planar models can inconsistently but drastically misrepresent intersection density, street lengths, routing, and connectivity.


Robotica ◽  
1990 ◽  
Vol 8 (3) ◽  
pp. 195-205 ◽  
Author(s):  
T.M. Rao ◽  
Ronald C. Arkin

SUMMARYThe problem of path planning for a mobile robot has been studied extensively in recent literature. Much of the work in this area is devoted to the study of path planning for an earth-bound robot in two dimensions. In this paper, we explore the problem for a robot that can fly in three dimensional space or crawl on 3D surfaces or use a combination of both. We assume that the obstacles can be modeled as polyhedral objects.


1990 ◽  
Vol 13 (1) ◽  
pp. 49-65 ◽  
Author(s):  
Vicky Lewis

Young children often leave a gap between the sky and the horizon in their drawings and paintings. Study 1 examined the landscape paintings of a group of 45 7-10-year-old children and found the children leaving an air gap to be significantly younger than those painting the sky to the horizon. In addition the omission of the air gap was associated with the use of devices to represent three-dimensional space in two dimensions. In Study 2 a group of 7-8-year old chldren painted landscapes on two occasions separated by 7-7.5 months. This study suggested that there are a series of stages between leaving a gap and painting the sky to meet the horizon. It is concluded that painting the sky to meet the horizon may be one of several strategies for representing three-dimensional space, which develops over the age range studied.


Author(s):  
Kristofer Hägg ◽  
Jing Li ◽  
Masoumeh Heibati ◽  
Kathleen R. Murphy ◽  
Catherine J. Paul ◽  
...  

The direct sampling method revealed the high treatment capacity of the unsaturated zone and the significant impact of infiltration basin management on microbial communities in managed aquifer recharge (MAR).


2013 ◽  
Vol 36 (5) ◽  
pp. 544-545 ◽  
Author(s):  
Michael Barnett-Cowan ◽  
Heinrich H. Bülthoff

AbstractJeffery et al. propose a non-uniform representation of three-dimensional space during navigation. Fittingly, we recently revealed asymmetries between horizontal and vertical path integration in humans. We agree that representing navigation in more than two dimensions increases computational load and suggest that tendencies to maintain upright head posture may help constrain computational processing, while distorting neural representation of three-dimensional navigation.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nell Green Nylen

Water scarcity commonly motivates managed aquifer recharge projects, but other factors can motivate recharge efforts, including in relatively water-rich areas. Surface water quality regulation has been a major driving force behind a large-scale recharge project in development in Virginia’s Coastal Plain region, where nutrient pollution from agricultural and urban sources has degraded the Chesapeake Bay’s ecosystems, leading state and federal regulators to require dischargers to reduce their nutrient contributions to the watershed over time. Hampton Roads Sanitation District is pursuing the Sustainable Water Initiative for Tomorrow, an innovative, multi-benefit initiative designed to address both nutrient pollution in the Chesapeake Bay watershed and regional groundwater overdraft in the Coastal Plain. When fully implemented, the initiative is expected to recharge approximately 100 million gallons per day of drinking-water quality, treated municipal wastewater into the Potomac Aquifer System through injection facilities located at five of the District’s wastewater treatment plants. As a result, the District expects to reduce its nutrient discharges from those plants by approximately 90%, enabling it to meet its own mandated nutrient limits while also generating nutrient credits that it can trade to other dischargers. Modeling suggests that the initiative will increase regional water pressure within the confined aquifer system, helping to combat groundwater overdraft and its negative impacts, including aquifer compaction and related land subsidence, falling water levels in wells, and saltwater intrusion. This case study provides insights into the influence of institutional context on managed aquifer recharge and on multi-benefit water resource projects more generally.


Sign in / Sign up

Export Citation Format

Share Document