scholarly journals Changes in Major Global River Discharges Directed into the Ocean

Author(s):  
Xiaoqing Shi ◽  
Tianling Qin ◽  
Hanjiang Nie ◽  
Baisha Weng ◽  
Shan He

Under the influence of global climate change, the discharges of major global rivers directed into the ocean have undergone significant changes. To study the trends and causes in discharge variation, we selected 40 large rivers and analyzed their annual discharges near their estuaries from 1960 to 2010. The method of runoff variation attribution analysis based on the Budyko hypothesis for large-scale basins was developed, in which influencing factors of human activities and glacial melting factors were added to the formula. The contribution rate of climate factors and human activities to changes in discharge were quantitatively identified. Climatic factors include precipitation, evapotranspiration and glacial melting. Human activity factors include underlying surface and artificial water transfer. The contribution rate is determined by the elastic coefficient, which is obtained by the ratio of change rate of each factor and the change rate of runoff. The results indicated that the discharges predominantly showed downward trends with a few upward trends. Rivers in North America and Africa showed downward trends, and those in Europe principally showed upward trends. Climate was the main influencing factor of discharges changes, and only approximately 25% of river discharges were greatly affected by human activities. River discharges in 75% of the basins which mainly contains subtropical monsoon humid climate and savanna climate zones showed upward trends. In the four basins which are mainly contains tropical rainforest climate and tropical monsoon climate, they all showed downward trends. The trend of discharges in the temperate monsoon climate, temperate continental climate, and temperate maritime climate cannot be accurately judged because of irregular variation. The discharges in the mid-high latitudinal zones predominantly showed upward trends, while those in the mid-low latitudinal zones with the influence of human activities showed downward trends.

2019 ◽  
Vol 11 (13) ◽  
pp. 1628 ◽  
Author(s):  
Jing Zhao ◽  
Shengzhi Huang ◽  
Qiang Huang ◽  
Hao Wang ◽  
Guoyong Leng ◽  
...  

Understanding the changing relationships between vegetation coverage and precipitation/temperature (P/T) and then exploring their potential drivers are highly necessary for ecosystem management under the backdrop of a changing environment. The Jing River Basin (JRB), a typical eco-environmentally vulnerable region of the Loess Plateau, was chosen to identify abrupt variations of the relationships between seasonal Normalized Difference Vegetation Index (NDVI) and P/T through a copula-based method. By considering the climatic/large-scale atmospheric circulation patterns and human activities, the potential causes of the non-stationarity of the relationship between NDVI and P/T were revealed. Results indicated that (1) the copula-based framework introduced in this study is more reasonable and reliable than the traditional double-mass curves method in detecting change points of vegetation and climate relationships; (2) generally, no significant change points were identified during 1982–2010 at the 95% confidence level, implying the overall stationary relationship still exists, while the relationships between spring NDVI and P/T, autumn NDVI and P have slightly changed; (3) teleconnection factors (including Arctic Oscillation (AO), Pacific Decadal Oscillation (PDO), Niño 3.4, and sunspots) have a more significant influence on the relationship between seasonal NDVI and P/T than local climatic factors (including potential evapotranspiration and soil moisture); (4) negative human activities (expansion of farmland and urban areas) and positive human activities (“Grain For Green” program) were also potential factors affecting the relationship between NDVI and P/T. This study provides a new and reliable insight into detecting the non-stationarity of the relationship between NDVI and P/T, which will be beneficial for further revealing the connection between the atmosphere and ecosystems.


2019 ◽  
pp. 83-93
Author(s):  
Olena Tsyhanska ◽  
Viacheslav Tsyhanskyi

The worldwide importance of soybean and the main limitations to crop yields. Because of its potential for large-scale production, soybean (Glycine max (L.) has excelled in the world agricultural economy as a major oilseed crop. At present, soybeans are grown primarily for oil extraction and for use as a high protein meal for animal feed. Soybean has a protein content of approximately 40% and an oil content of approximately 20%. This crop is currently being produced around the world. Indicate that to obtain increases in soybean yields, it is necessary to understand the interaction between cultivars and the production environment. Based on these factors, crop management can be adjusted to achieve proper development of plants in each production environment. Soybean is very responsive to environmental conditions, and the main climatic factors affecting its crop yields include the photoperiod, which influences the availability of full light, temperature and water availability. Although the effects of various environmental factors interfere with the performance of crops, water restriction is the main limiting environmental factor that contributes to the failure to obtain maximum soybean yields influencing the use of other environmental resources. Two-thirds of world food production through cultivation occurs under water stress. In this context and because of the prospect of global climate change, most crops will be exposed to negative impacts caused by drought.


2020 ◽  
Vol 12 (3) ◽  
pp. 519 ◽  
Author(s):  
Yuxin Zhang ◽  
Xiyong Hou

The future of islands has been the subject of international concern, scientific debate and media interest in the last decade. As a result of global warming and sea level rise, increasingly more research and speculations about the morphology and positions of island coastlines have been produced. However, some assumptions are not well documented due to the lack of large-scale research and data support. This paper contributes to filling this gap by extracting and assessing coastline changes on Southeast Asian islands overall during 2000–2015 based on Landsat remote sensing images. The results are as follows: ① the coastline, defined by the mean high water line (MHWL), of Southeast Asia remained relatively stable but showed considerable variability in space, especially in estuaries, bays and straits. ② A total of 9035 islands were extracted, among which approximately 10% of islands witnessed locational changes in coastlines, resulting in net reductions of nearly 86 km2 in area and 50,000 km in centroid displacement. Additionally, the coastline length increased by 532 km from 2000 (148,508 km) to 2015 (149,040 km). Natural coastlines decreased by 2503 km, while artificial coastlines increased by 3035 km. Among the total coastlines, 11% changed: 5% exhibited deposition, while 6% experienced retreat. ③ The temporal and spatial changes in coastlines were the result of interactions between natural processes and human activities. Climatic and environmental changes had wide impacts, while human activities caused more dramatic local changes. In addition, the sizes, shapes and landforms of the islands played significant roles in coastline changes. ④ Coastal erosion and expansion often coexisted in dynamic equilibrium under the influence of coastal hydrodynamics, such as cyclical tides and near-shore sediment transport. Our findings reveal spatial–temporal variations in island coastlines in Southeast Asia from 2000–2015 and provide critical information for the current study of islands. This work has great significance for the study of global climate change impacts and the integrated management of island coastal zones.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
J. N. Njukeng ◽  
P. M. Muenyi ◽  
B. K. Ngane ◽  
E. E. Ehabe

Several exploitation systems are being used today to sustainably improve dry rubber production by the rubber tree (Hevea brasiliensis). These involve different combinations of tapping frequencies, cut lengths, stimulation frequencies, and stimulant concentrations. Such combinations are much easier to ascertain for confirmed clones as opposed to new introductions, for which extensive testing is required. A study was therefore conducted in the South West region of Cameroon characterized by a monomodal rainfall regime (one dry and one rainy season) to evaluate yield response to Ethephon stimulation (conc. 2.5%) of some newly introduced rubber clones (IRCA 18, IRCA 19, RRIC 100, and RRIC 110) for large-scale planting in Cameroon. Generally, annual yields and tree productivity ranged between the referenced clones tested: some closer to the intermediate yielding GT 1 (IRCA 18 and IRCA 19) and others to the high yielding PB clones (RRIC 100 and RRIC 110) indicating thereby the possible convenient adoption of some established exploitation regimes for these new introductions. Climatic factors like cumulative rainfall and relative humidity conditioned rubber yields of clones tested and considerably accounted for yield variations. These results could be used as a first step towards deriving regional climate models for predicting rubber yields, especially in an era of global climate change.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3378
Author(s):  
Hongyang Wei ◽  
Xiujuan Liang ◽  
Shuhui Liu ◽  
Mingjun Liu ◽  
Changlai Xiao

Although Dehui City has excellent agricultural conditions, long-term large-scale over-cultivation and human activities in recent years have caused significant changes in the local groundwater chemical characteristics. This study analyzes the causes, evolution, and prediction of groundwater chemistry via multi-disciplinary theoretical cross-cutting methods, such as groundwater ion composition-ratio analysis and groundwater influencing factor analysis, and artificial neural networks. The lithological characteristics of the groundwater aquifer were combined with ion composition-ratio mapping to explore the cause of groundwater chemistry composition in the study area. Piper three-line diagrams and Gibbs diagrams were used to analyze the evolution characteristics and influencing factors of groundwater chemistry in the study area. Based on these data, time series predictions were made for hydrochemical data. The results demonstrate that the chemical origins of groundwater in the study area are mainly background stratum and cation exchange, influenced by human activities. The main factors of groundwater chemical characteristics have changed from rock weathering to evaporation/precipitation in the past two decades. The hydrochemical characteristics changed from secondary alkalinity to secondary salinity. The predicted data from long short-term memory neural networks indicated that groundwater would continue salinization without the changes in the conditions, leading to land degradation in the study area.


2019 ◽  
pp. 157-169 ◽  
Author(s):  
I. S. Deev ◽  
E. V. Kurshev ◽  
S. L. Lonsky

Studies and experimental data on the microstructure of the surface of samples of epoxy сarbon-fiber-reinforced plastics that have undergone long-term (up to 5 years) climatic aging in different climatic zones of Russia have been conducted: under conditions of the industrial zone of temperate climate (Moscow, MTsKI); temperate warm climate (Gelendzhik, GTsKI); a warm humid climate (Sochi, GNIP RAS). It is established that the determining factor for aging of carbon plastics is the duration of the complex effect of climatic factors: the longer the period of climatic aging, the more significant changes occur in the microstructure of the surface of the materials. The intensity of the aging process and the degree of microstructural changes in the surface of carbon plastics are affected by the features of the climatic zone. general regularities and features of the destruction of the surface of carbon plastics after a long-term exposure to climatic factors have been established on the basis of the analysis and systematization of the results of microstructural studies.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wang Shijin ◽  
Che Yanjun ◽  
Wei Yanqiang

AbstractChina’s temperate glaciers have a relatively warm and humid climate and hydrothermal conditions at low latitudes. Temperate glaciers, however, have larger ablation, higher ice temperatures, relatively fast movement speeds, and a significant sliding process at the bottom. As a result, these glaciers are more significantly affected by climate change. On the basis of topographic maps, aerial photography, and Landsat OLI images, and combined with existing research results, this paper systematically analyzed the temporal and spatial dynamic characteristics of typical temperate glaciers. The results are as follows: (1) From the 1950s to the 1970s, compared with other types of glaciers, temperate glaciers showed strong retreat and ablation trends in terms of area, length, speed, and mass balance. (2) The reduction rates of glacier areas of Kangri Garpo, Dagu Snow Mountain, Yulong Snow Mountain (YSM), and Meili Snow Mountain (MSM) in China’s temperate glacier areas all exceeded 38%, which was far above the national average of 18% from the 1950s to the 2010s. (3) The recent length retreat rates of Azha Glacier, Kangri Garpo, and Mingyong Glacier, MSM, Hailuogou Glacier (HG), Gongga Snow Mountain (GSM), and Baishui River Glacier No. 1 (BRGN1), YSM were above 22 m/a, which was faster than the retreat rates of other regions. (4) Consistent with glacier retreat, temperate glaciers also had a faster ice flow speed. The ice flow velocities of the BGN1, HG, Parlung River Glaciers No. 4 and 94, and Nyainqêntanglha were, respectively, 6.33–30.78 m/a, 41–205 m/a, 15.1–86.3 m/a, and 7.5–18.4 m/a, which was much faster than the velocity of other types of glaciers. (5) Mass loss of temperate glaciers was most dramatic during the observation period (1959–2015). The annual mass balance from eight typical temperate glaciers fluctuated between − 2.48 and 0.44 m w.e., and the annual average change rate of mass balance (− 0.037 m w.e./a) was much higher than that in China (− 0.015 m w.e./a, p < 0.0001) and globally (− 0.013 m w.e./a, p < 0.0001).


Sign in / Sign up

Export Citation Format

Share Document