scholarly journals Aggravation of Human Diseases and Climate Change Nexus

Author(s):  
Mohd Danish Khan ◽  
Hong Ha Thi Vu ◽  
Quang Tuan Lai ◽  
Ji Whan Ahn

For decades, researchers have debated whether climate change has an adverse impact on diseases, especially infectious diseases. They have identified a strong relationship between climate variables and vector’s growth, mortality rate, reproduction, and spatiotemporal distribution. Epidemiological data further indicates the emergence and re-emergence of infectious diseases post every single extreme weather event. Based on studies conducted mostly between 1990-2018, three aspects that resemble the impact of climate change impact on diseases are: (a) emergence and re-emergence of vector-borne diseases, (b) impact of extreme weather events, and (c) social upliftment with education and adaptation. This review mainly examines and discusses the impact of climate change based on scientific evidences in published literature. Humans are highly vulnerable to diseases and other post-catastrophic effects of extreme events, as evidenced in literature. It is high time that human beings understand the adverse impacts of climate change and take proper and sustainable control measures. There is also the important requirement for allocation of effective technologies, maintenance of healthy lifestyles, and public education.

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


2021 ◽  
Vol 7 (4) ◽  
pp. 19-27
Author(s):  
Saifuddin Soz ◽  
Dhananjay Mankar

Climate change is already bringing tremendous influence on people’s lives, particularly the underprivileged. It’s already visible in a variety of ways. In recent decades, Asia and the Pacific have seen consistent warming trends as well as more frequent and powerful extreme weather events such as droughts, cyclones, floods, and hailstorms. This study was done in Ajmer District of Rajasthan, to find out the climate variation in the last 10 years. The study describes the effects due to climate change on the livelihoods of the people, so a descriptive research design was used for the study to find out the impact of climate change on rural livelihood in central Rajasthan. The study is based on a large representative of sample, quantitative data was collected to gain an idea of the impact on the livelihoods due to climate change at the household level. It shows the negative impact of climate change on rural livelihood which forced the people to change their livelihood directly or indirectly. It was found that climate change had an impact on people’s lives and people do understand the variation in climate change in terms of changes in the weather, unseasonal rain, and drought.


2021 ◽  
Author(s):  
Laura Massano ◽  
Giorgia Fosser ◽  
Marco Gaetani

<p>In Italy the wine industry is an economic asset representing the 8% of the annual turnover of the Food & Beverage sector, according to Unicredit Industry Book 2019. Viticulture is strongly influenced by weather and climate, and winegrowers in Europe have already experienced the impact of climate change in terms of more frequent drought periods, warmer and longer growing seasons and an increased frequency of weather extremes. These changes impact on both yield production and wine quality.</p><p>Our study aims to understand the impact of climate change on wine production, to estimate the risks associated with climate factors and to suggest appropriate adaptation measurement. The weather variables that most influence grape growth are: temperature, precipitation and evapotranspiration. Starting for these variables we calculate a range of bioclimatic indices, selected following the International Organisation of Vine and Wine Guidelines (OIV), and correlate these with wine productivity data. According to the values of different indices it is possible to determine the more suitable areas for wine production, where we expect higher productivity, although the climate is not the only factor influencing yield.</p><p>Using the convection-permitting models (CPMs – 2.2 horizontal resolution) we investigate how the bioclimatic indices changed in the last 20 years, and the impact of this change on grapes productivity. We look at possible climate trends and at the variation in the frequency distribution of extreme weather events. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of surface and orography field, explicitly resolve deep convection and show an improved representation of extremes events. In our study, we compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to evaluate the possible added value of high resolution models for impact studies. To compare models' output to observation the same analysis it carried out using E-OBS dataset.</p><p>Through our impact study, we aim to provide a tool that winegrower and stakeholders involved in the wine business can use to make their activities more sustainable and more resilient to climate change.</p>


2020 ◽  
Author(s):  
Keh-Jian Shou

<p>Due to active tectonic activity, the rock formations are young and highly fractured in Taiwan area. The dynamic changing of river morphology makes the highly weathered formations or colluviums prone to landslide and debris flow. For the past decade, the effect of climate change is significant and creates more and more extreme weather events. The change of rainfall behavior significantly changes the landslide behavior, which makes the large-scale landslides, like the Shiaolin landslide, possible. Therefore, it is necessary to develop the new technologies for landslide investigation, monitoring, analysis, early warning, etc.</p><p>Since the landslide hazards in Taiwan area are mainly induced by heavy rainfall, due to climate change and the subsequent extreme weather events, the probability of landslides is also increased. Focusing on the upstreams of the watersheds in Central Taiwan, this project studied the behavior and hazard of shallow and deep-seated landslides. Different types of susceptibility models in different catchment scales were tested, in which the control factors were analyzed and discussed. This study also employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM) downscaling estimation to predict the extreme rainfalls in the future. Such that the future hazard of the shallow and deep-seated landslide in the study area can be predicted. The results of predictive analysis can be applied for risk prevention and management in the study area.</p>


2020 ◽  
pp. 78-110
Author(s):  
Yu. Rud ◽  
◽  
O. Zaloilo ◽  
L. Buchatsky ◽  
I. Hrytsyniak ◽  
...  

Purpose. As the climate change impacts freshwater and marine ecosystems, and rising ocean temperatures and acidification continue to this moment, our aim was to analyze the literature and summarize information on the development of fish infectious diseases in the light of global warming. Findings. Even a slight increase in temperature affects the life cycle, physiology, behavior, distribution and structure of populations of aquatic bioresources, especially fish. Recent studies show that some infectious diseases of fish spread much faster with increasing temperature. Climate change contributes to pathogens spread in both marine and freshwater areas. In particular, rising water temperatures can expand the range of diseases. Aquatic bioresources have high cumulative mortality from infectious diseases, and pathogens are rapidly progressing, and these phenomena may be powered by climate change, leading to the geographical spread of virulent pathogens to fisheries and aquaculture facilities, threatening much of global production and food security. The article presents data on the impact of climate change and global warming on aquaculture and fisheries. The list of the main pathogens of fish of various etiology in Ukraine, including viral, bacterial and parasitic diseases is presented. The impact of infectious agents on modern aquaculture is described and the main ideas about the possible long-term consequences of climate change for fish farms are given. Practical Value. The review may be useful for specialists in veterinary medicine, epizootology and ichthyopathology. Key words: climate change, infectious diseases of fish, pathogenesis.


Author(s):  
Sarah E Perkins-Kirkpatrick ◽  
Daithi Stone ◽  
Dann M. Mitchell ◽  
Suzanne M. Rosier ◽  
Andrew David King ◽  
...  

Abstract Investigations into the role of anthropogenic climate change in extreme weather events are now starting to extend into analysis of anthropogenic impacts on non-climate (e.g. socio-economic) systems. However, care needs to be taken when making this extension, because methodological choices regarding extreme weather attribution can become crucial when considering the events’ impacts. The fraction of attributable risk (FAR) method, useful in extreme weather attribution research, has a very specific interpretation concerning a class of events, and there is potential to misinterpret results from weather event analyses as being applicable to specific events and their impact outcomes. Using two case studies of meteorological extremes and their impacts, we argue that FAR is not generally appropriate when estimating the magnitude of the anthropogenic signal behind a specific impact. Attribution assessments on impacts should always be carried out in addition to assessment of the associated meteorological event, since it cannot be assumed that the anthropogenic signal behind the weather is equivalent to the signal behind the impact because of lags and nonlinearities in the processes through which the impact system reacts to weather. Whilst there are situations where employing FAR to understand the climate change signal behind a class of impacts is useful (e.g. “system breaking” events), more useful results will generally be produced if attribution questions on specific impacts are reframed to focus on changes in the impact return value and magnitude across large samples of factual and counterfactual climate model and impact simulations. We advocate for constant interdisciplinary collaboration as essential for effective and robust impact attribution assessments.


Author(s):  
V. Guhan ◽  
V. Geethalakshmi ◽  
R. Jagannathan ◽  
S. Panneerselvam ◽  
K. Bhuvaneswari

<p><strong>Abstract.</strong> Climate change induced extreme weather events such as drought and flood condition are likely to become more common and associated impacts on crop production will be more without proper irrigation planning. The present investigation was undertaken for assessing the impact of Climate change on tomato yield and water use efficiency (WUE) using AquaCrop model and RegCM 4.4 simulations. The water driven AquaCrop model was validated based on observation of field experiment conducted with four different dates of sowing (1st November, 15th November, 1st December, 15th December) at Ponnaniyar basin, Tiruchirappalli. Validation of AquaCrop model indicated the capability of AquaCrop in predicting tomato yield, biomass and WUE close to the observed data. Seasonal maximum and minimum temperatures over Tiruchirappalli are projected to increase in the mid-century under both RCP4.5 and RCP8.5 scenarios. Maximum temperature is expected to increase up to 1.7&amp;thinsp;&amp;deg;C/2.5&amp;thinsp;&amp;deg;C in SWM and 1.9&amp;thinsp;&amp;deg;C/2.9&amp;thinsp;&amp;deg;C in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways. Minimum temperature is expected to increase up to 1.6&amp;thinsp;&amp;deg;C/2.2&amp;thinsp;&amp;deg;C in SWM and 1.6&amp;thinsp;&amp;deg;C/2.1&amp;thinsp;&amp;deg;C in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways. Seasonal rainfall over Tiruchirappalli is expected to decrease with RCP4.5 and RCP8.5scenarios with different magnitude. Rainfall is expected to change to the tune of &amp;minus;1/&amp;minus;11 per cent in SWM and &amp;minus;2/&amp;minus;14 per cent in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways.</p>


Sign in / Sign up

Export Citation Format

Share Document