scholarly journals Analysis of Potential Risks Associated with Urban Stormwater Quality for Managed Aquifer Recharge

Author(s):  
Song ◽  
Du ◽  
Ye

Managed aquifer recharge (MAR) can be used to increase storage and availability of groundwater resources, but water resources available for recharge are constrained due to a surface water shortage. Alternative resources, like stormwater, are receiving increasing attention as sustainable resources for reuse in MAR. However, pollutants in stormwater can impact groundwater quality, and cause clogging of the infiltration system. Based on the stormwater data in the literature, the physicochemical stormwater properties of data were analyzed. The results showed that concentrations of pollutants from different underlying surfaces varied widely. The main pollutants of stormwater were as follows: Total suspended particles (TSSs), organic matter represented by the chemical oxygen demand (COD), nutrients (total nitrogen, TN; total phosphorus, TP; and NH3–N), and metals (Zn, Pb, Cu, Cd, Fe, and Mn). Based on the simulation of TOUGHREACT, the contamination risk of pollutants for each type of stormwater was assessed. The risk of contamination was divided into four categories due to the different migration times of ions through the sand column. The iron ion has the highest risk of contamination, followed by Zn and Mn, and the contamination risk of nutrients and other metals (Pb, Cu, and Cd) are relatively low. Besides, the physical, biological, and chemical clogging risk were evaluated. The physical clogging potential of all types of stormwater is very high because of the high concentration of TSS. According to the concentration of TN that can spur the growth of bacteria and algae, the relative risk of biological clogging for stormwater is greenbelt stormwater < road stormwater < roof stormwater. However, only road stormwater has high chemical clogging due to the existence of iron, which can generate precipitation that blocks the pore volume.

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1846 ◽  
Author(s):  
Peter Dillon ◽  
Enrique Fernández Escalante ◽  
Sharon B. Megdal ◽  
Gudrun Massmann

Managed aquifer recharge (MAR) is part of the palette of solutions to water shortage, water security, water quality decline, falling water tables, and endangered groundwater-dependent ecosystems. It can be the most economic, most benign, most resilient, and most socially acceptable solution, but frequently has not been implemented due to lack of awareness, inadequate knowledge of aquifers, immature perception of risk, and incomplete policies for integrated water management, including linking MAR with demand management. MAR can achieve much towards solving the myriad local water problems that have collectively been termed “the global water crisis”. This special issue strives to elucidate the effectiveness, benefits, constraints, limitations, and applicability of MAR, together with its scientific advances, to a wide variety of situations that have global relevance. This special issue was initiated by the International Association of Hydrogeologists Commission on Managing Aquifer Recharge to capture and extend from selected papers at the 10th International Symposium on Managed Aquifer Recharge (ISMAR10) held in Madrid, Spain, 20–24 May 2019.


2019 ◽  
Vol 28 (1) ◽  
pp. 175-192
Author(s):  
Phil Hayes ◽  
Chris Nicol ◽  
Andrew D. La Croix ◽  
Julie Pearce ◽  
Sebastian Gonzalez ◽  
...  

AbstractThe Precipice Sandstone is a major Great Artesian Basin aquifer in the Surat Basin, Queensland, Australia, which is used for water supply and production of oil and gas. This report describes use of observed groundwater pressure responses to managed aquifer recharge (MAR) at a regional scale to test recent geological descriptions of Precipice Sandstone extent, and to inform its hydrogeological conceptualisation. Since 2015, two MAR schemes have injected over 20 GL of treated water from coal seam gas production into the Precipice Sandstone, with pressure responses rapidly propagating over 100 km, indicating high aquifer diffusivity. Groundwater modelling of injection and inversion of pressure signals using PEST software shows the spatial variability of aquifer properties, and indicates that basin in-situ stresses and faulting exert control on permeability. Extremely high permeability, up to 200 m/day, occurs in heavily fractured regions with a dual-porosity flow regime. The broader-scale estimates of permeability approach an order of magnitude higher than previous studies, which has implications for the management of water resources in the Precipice Sandstone. Results also show the Precipice Sandstone to have broadly isotropic permeability. The results also support a recent geological interpretation of the Precipice Sandstone as having more limited lateral extent than initially considered. The study shows the effective use of MAR injection data to improve geological and hydrogeological understanding through groundwater model inversion. It also demonstrates the utility of combining hydrogeological and reservoir-engineer datasets in areas explored and developed for both groundwater resources and oil and gas resources.


2020 ◽  
Author(s):  
Zsóka Szabó ◽  
Márk Szijártó ◽  
Marco Masetti ◽  
Daniele Pedretti ◽  
Ferenc Visnovitz ◽  
...  

&lt;p&gt;The Danube-Tisza Interfluve is one of the largest areas covered by wind-blown sand in Hungary. Two major morphologic region types are the flat-bottomed valleys of the Danube and Tisza rivers and a central elevated ridge region, characterized by sand plains, dunes and deflationary depressions. The area is poor in surface waters, mainly artificial channels can be found. Previously many lakes were present, but most of them dried out due to water abstraction, climate change, forestation and canalization related water level reduction. Water management problems in the broader area have been known for decades, many plans have been made to address water scarcity, but none have materialized (Kov&amp;#225;cs et al. 2017). These plans usually tried to solve water shortage with large scale engineering solutions, e.g. to pump water up from the Danube River Valley through surface channels to the ridge region (Nagy et al. 2016). This is very expensive, influences the ecological pattern, moreover water can easily infiltrate from the channels and would not reach the higher regions in the required amount (Silva Cisneros, 2019).&lt;br&gt;The aim of the research was to examine the suitability of Managed Aquifer Recharge methods, then a local scale field research was carried out in order to find local scale solutions. Finally the results were checked by numerical simulation to contribute to the solution of water shortage of this ecologically important area.&lt;br&gt;Firstly, a MAR surface infiltration suitability map was constructed, that shows areas with favorable hydraulic conductivity at the upper 10 m and low water levels, which means that there is a reservoir in the unsaturated zone to store infiltrated water. Based on suitability mapping, a local research area was selected which showed promising potential. Geophysical measurements (ERT &amp;#8211; Electrical Resistivity Tomography, RMT &amp;#8211; Radio-magnetotellurics) were performed, shallow wells were surveyed, and additional wells were drilled by hand driller. The results obtained during the field sampling contributed to the preliminary characterization of the area from a geological and hydrogeological point of view. In order to understand the effects of artificial channels and the possible water recharge methods a saturated-unsaturated flow model and different scenario models were built up in 2D.&lt;br&gt;This local scale case study was a first step towards the further aim of this research, which is to understand the effects of man-made changes on groundwater flow systems in the broader area and suggest appropriate local scale MAR solutions accordingly.&lt;/p&gt;&lt;p&gt;This research is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 810980.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Kov&amp;#225;cs, A. D., Hoyk, E., Farkas, J. Z. (2017).&lt;/strong&gt; Homokh&amp;#225;ts&amp;#225;g&amp;#8211;A semi-arid region facing with complex problems in the Carpathian Basin. &lt;em&gt;European Countryside,&amp;#160;9&lt;/em&gt;(1), 29-50.&lt;br&gt;&lt;strong&gt;Nagy, I., Tomb&amp;#225;cz, E., L&amp;#225;szl&amp;#243;, T., Magyar, E., M&amp;#233;sz&amp;#225;ros, Sz., Pusk&amp;#225;s, E., Scheer, M. (2016). &lt;/strong&gt;V&amp;#237;zvisszatart&amp;#225;si mintaprojektek a Homokh&amp;#225;ts&amp;#225;gon: &amp;#8222;Nyugati &amp;#233;s Keleti&amp;#8221; mintater&amp;#252;letek. &lt;em&gt;Hidrol&amp;#243;giai K&amp;#246;zl&amp;#246;ny, 96&lt;/em&gt;(4), 42-60.&lt;br&gt;&lt;strong&gt;Silva Cisneros, C. (2019). &lt;/strong&gt;Identification of suitable zones of Managed Aquifer Recharge (MAR) in Western area of Duna-Tisza Interfluve using Geographic Information System (GIS). &lt;em&gt;MSc thesis. E&amp;#246;tv&amp;#246;s Lor&amp;#225;nd University,&lt;/em&gt; 62.&lt;/p&gt;


2014 ◽  
Vol 2 (4) ◽  
pp. T155-T166 ◽  
Author(s):  
Vanessa Nenna ◽  
Adam Pidlisecky ◽  
Rosemary Knight

The use of managed aquifer recharge (MAR) to supplement groundwater resources can mitigate the risks to an aquifer in overdraft. However, limited information on subsurface properties and processes that control groundwater flow may lead to low levels of recapture of infiltrated water, reducing the efficacy of MAR operations. We used long 1D electrical resistivity probes to monitor the subsurface response over one diversion season at five locations beneath an operating recharge pond in northern California. The experiment demonstrated the benefits of integrating geophysical and standard hydrologic measurements. The water table response interpreted from time-lapse electrical resistivity images was in good agreement with traditional pore-pressure transducer measurements at coincident locations. Moreover, the electrical resistivity measurements were able to identify vertical variations in water saturation that would not have appeared in pore-pressure data alone. Changes in saturation estimated from electrical resistivity models indicated large hydraulic gradients at early time and suggested the presence of highly permeable conduits and baffles between the surface and the screened interval of recovery wells. The interpreted structure of these conduits and baffles would contribute to the movement of a large amount of infiltrated water beyond the capture zone of recovery wells before pumping begins, accounting in part for the low recovery rates.


2019 ◽  
Vol 25 (6) ◽  
pp. 841-846
Author(s):  
Heonseop Eom ◽  
Sami Flimban ◽  
Anup Gurung ◽  
Heejun Suk ◽  
Yongcheol Kim ◽  
...  

Managed aquifer recharge (MAR), an intentional storage of excess water to an aquifer, is becoming a promising water resource management tool to cope with the worldwide water shortage. Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and overall performance in MAR. The current study investigates the impact of carbon and nitrogen in recharge water on bioclogging in MAR. For this investigation, continuous-flow columns packed with sand grains were operated with influents having 0 (C1), 5 (C2), and 100 mg/L (C3) of glucose with or without introduction of nitrate. Hydraulic conductivity was analyzed to evaluate bioclogging in the systems. In C1 and C2, hydraulic conductivity was not significantly changed overall. However, hydraulic conductivity in C3 was decreased by 28.5% after three weeks of operation, which appears to be attributed to generation of fermentation bacteria. Introduction of nitrogen to C3 led to a further decrease in hydraulic conductivity by 25.7% compared to before it was added, most likely due to stimulation of denitrifying bacteria. These findings indicate that high carbon contents and introduction of additional nitrogen in recharge water cause serious bioclogging in MAR, suggesting the necessity for controlling quality of recharge water.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 284
Author(s):  
Hexuan Zhang ◽  
Xueyan Ye ◽  
Xinqiang Du

The use of stormwater for managed aquifer recharge (MAR) has become one of the most important ways to deal with water shortages and the corresponding environmental geological problems, especially in the north of China. The Fe (III) clogging of porous media is a common and significant problem that influences the effect of the infiltration rate. This paper focuses on the migration characteristics and clogging mechanisms of iron hydroxides in sand columns. The results indicate that the permeability of porous media significantly decreased at the inlet of the fine sand column and inside the coarse sand column. We demonstrated that, when the Fe (III) concentration was higher, a smaller infiltration medium size was produced more rapidly, and there was more significant clogging. More than 80% of the injected Fe (III) remained in the sand column, and more than 50% was retained within 1 cm of the column inlet. The mass retention increased with the decrease in the size of the infiltration medium particles and with the increase in the injected Fe (III) concentration. The main material that caused Fe (III) clogging was iron hydroxide colloids, which were in the form of a granular or flocculent membrane coating the quartz sand. The mechanisms of clogging and retention were blocking filtration and deep bed filtration, adsorption, and deposition, which were strongly affected by the coagulation of Fe (III) colloidal particles.


2017 ◽  
Vol 25 (6) ◽  
pp. 1795-1809 ◽  
Author(s):  
Julian Xanke ◽  
Tanja Liesch ◽  
Nadine Goeppert ◽  
Jochen Klinger ◽  
Niklas Gassen ◽  
...  

Author(s):  
Cheh-Shyh Ting ◽  
Kou-Feng Chiang ◽  
Sheng-Hsin Hsieh ◽  
Chi-Hung Tsao ◽  
Chi-Hung Chuang ◽  
...  

Abstract. Taiwan is an oceanic nation with an area of approximately 36 000 km2. The Central Mountain Range was formed by the Eurasian and Philippine plates and stretches along the entire island from north to south, along the entire island, thus forming a natural line of demarcation for rivers on the eastern and western sides of the island. Pingtung Plain is formed by Quaternary alluvial fan material from the three main rivers. The aquifers comprise very coarse permeable sands and gravels under phreatic conditions in the north and less permeable sands under confined or even artesian conditions in the southern part of Pingtung Plain. The natural groundwater source is mainly from direct rainfall percolation and infiltration from the three main rivers, with their catchments lying partly outside the plain. The uncontrolled development of groundwater resources has led to undesirable effects, especially in the south, where aquaculture is concentrated. These effects are land subsidence, saline water intrusion, and lowering of water tables. It is thus one of the important key strategies in the solution of land subsidence, water resource development and flood control for sustainable development named Benefited Water Reuse from Storm Water in Pingtung, Taiwan. A serious of studies for this issue has been carried out. The feasibility study phase of the Artificial Recharge of Groundwater Project (ARGP) for Pingtung, Taiwan, was then implemented in 1997 using a MODFLOW simulation and an optimal model. Through the managed aquifer recharge model, the aquifer storage increases and the inundation scale decreases with land subsidence of the coastal area, as aimed at by the purpose of the controlled groundwater level. Infiltration mechanism simulation of artificial groundwater recharge, with the TOUGH2 model, was used to simulate the high infiltration behaviour in sequence in 2010. Both publications have been confirmed and approved by the Central Government and then approved by the environmental impact assessment. The ARGP was then implemented in May 2018 and operated for one wet season for the first phase with 50 ha and a total of 300 ha from May to October 2018. The sedimentation over the top of the recharge basin forms the clogging mechanism which has been analysed. The operation experience can further provide the mechanism process for research reference. The project, once implemented, can improve and mitigate land subsidence as well as formulate water banks for adapting and managing aquifer recharge.


Sign in / Sign up

Export Citation Format

Share Document