scholarly journals Effect of Increased Influent COD on Relieving the Toxicity of CeO2 NPs on Aerobic Granular Sludge

Author(s):  
Xiaoying Zheng ◽  
Yuan Zhang ◽  
Wei Chen ◽  
Weihong Wang ◽  
Hang Xu ◽  
...  

Due to the increased use of cerium oxide nanoparticles (CeO2 NPs), their potential environmental risks have caused concern. However, their effects on the aerobic granular sludge (AGS) process and the later recovery of AGS are still unclear. In this study, we comprehensively determined the changes in pollutant removal and the levels of extracellular polymeric substances (EPS) in AGS that were exposed to CeO2 NP treatments (0 (the control, R0), 1 (R1), and 5 (R5) mg/L), following an increase in the influent chemical oxygen demand (COD). An increase in the CeO2 NP concentration enhanced their inhibitory effect on the removal of total nitrogen (TN) and total phosphorus (TP), and promoted the production of polysaccharides (PS) and proteins (PN) in loosely bound EPS (LB-EPS) or tightly bound EPS (TB-EPS), as well as the dissolved organic carbon (DOC) components in EPS, but had no long-term effects on the removal of organic matter. When the addition of CeO2 NPs was stopped and the concentration of influent COD increased, the TN and TP removal efficiencies in R1 and R5 slowly increased and recovered. In R1, they were only 4.55 ± 0.55% and 2.71 ± 0.58% lower than in R0, respectively, while the corresponding values for R5 were 5.06 ± 0.46% and 6.20 ± 0.63%. Despite the LB-EPS and TB-EPS concentrations in the R1 and R5 treatments recovering and being similar to the levels in the control when no CeO2 NPs were added, they were still slightly higher than in the R0, which indicating that the negative effects of CeO2 NPs could not be completely eliminated due to the residual CeO2 NP levels in AGS.

2021 ◽  
Author(s):  
Yongsen Shi ◽  
Chunli Xu ◽  
Jingyi Li ◽  
Yilin Yao ◽  
Qigui Niu

The expanded granular sludge blanket reactor (EGSB) was operated for 198 days to study the long-term effects of phenanthrene (PHE) enrichment on system performance and microbial community. The results showed that the PHE was significantly enriched in the reactor. The final PHE concentration in effluent and sludge reached to 1.764±0.05 mg/L and 12.52±0.42 mg/gTS, respectively. While the average daily methane production was decreased by 5.0%-9.8% under long-term PHE exposure. The 3D-EEM of effluent indicated that PHE stimulated the microbial metabolism with the higher intensity of soluble microbial byproduct-like materials (SMP) and proteins. Moreover, the removal efficiency of soluble chemical oxygen demand (SCOD) and NH4+-N gradually diminished with the enrichment of PHE. PHE shaped the microbial community, and the predominant fermentative bacteria (Mesotoga) was severely inhibited. Contrarily, the bacteria (Syntrophorhabdus, Acinetobacter, Desulfovibrio, Desulfomicrobium) involved in PHE-degradation was enriched at end of Phase V. In addition, the relative abundance (RA) of hydrotrophic methanogens (Methanofastidiosum, Methanolinea, Methanobacterium, Methanomassiliicoccus) increased by 0.96-fold with the long-term enrichment of PHE, while the RA of acetoclastic Methanosaeta obviously decreased.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


Author(s):  
Sara Toja Ortega ◽  
Mario Pronk ◽  
Merle K. de Kreuk

Abstract Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and β-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2–1 mm), flocculent sludge (0.045–0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5–7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55–68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. Key points • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater. Graphical abstract


Author(s):  
Runjuan Cao ◽  
Yatong Ji ◽  
Taixing Han ◽  
Jingsong Deng ◽  
Liang Zhu ◽  
...  

To enhance the stability and pollutant removal performance of an aerobic granular sludge (AGS), four groups of AGS reactors with different pore sizes of mesh screen (R1 is control reactor,...


2012 ◽  
Vol 33 (3-4) ◽  
pp. 365-372 ◽  
Author(s):  
Thomas Fauvel ◽  
François Brischoux ◽  
Marine Jeanne Briand ◽  
Xavier Bonnet

Long term population monitoring is essential to ecological studies; however, field procedures may disturb individuals. Assessing this topic is important in worldwide declining taxa such as reptiles. Previous studies focussed on animal welfare issues and examined short-term effects (e.g. increase of stress hormones due to handling). Long-term effects with possible consequences at the population level remain poorly investigated. In the present study, we evaluated the effects of widely used field procedures (e.g. handling, marking, forced regurgitation) both on short-term (hormonal stress response) and on long-term (changes in body condition, survival) scales in two intensively monitored populations of sea kraits (Laticauda spp.) in New Caledonia. Focusing on the most intensively monitored sites, from 2002 to 2012, we gathered approximately 11 200 captures/recaptures on 4500 individuals. Each snake was individually marked (scale clipping + branding) and subjected to various measurements (e.g. body size, head morphology, palpation). In addition, a subsample of more than 500 snakes was forced to regurgitate their prey for dietary analyses. Handling caused a significant stress hormonal response, however we found no detrimental long-term effect on body condition. Forced regurgitation did not cause any significant effect on both body condition one year later and survival. These results suggest that the strong short-term stress provoked by field procedures did not translate into negative effects on the population. Although similar analyses are required to test the validity of our conclusions in other species, our results suggest distinguishing welfare and population issues to evaluate the potential impact of population surveys.


Sign in / Sign up

Export Citation Format

Share Document