scholarly journals Hydrilla verticillata–Sulfur-Based Heterotrophic and Autotrophic Denitrification Process for Nitrate-Rich Agricultural Runoff Treatment

Author(s):  
Qianyu Hang ◽  
Haiyan Wang ◽  
Zan He ◽  
Weiyang Dong ◽  
Zhaosheng Chu ◽  
...  

Hydrilla verticillata–sulfur-based heterotrophic and autotrophic denitrification (HSHAD) process was developed in free water surface constructed wetland mesocosms for the treatment of nitrate-rich agricultural runoff with low chemical oxygen demand/total nitrogen (C/N) ratio, whose feasibility and mechanism were extensively studied and compared with those of H. verticillata heterotrophic denitrification (HHD) mesocosms through a 273-day operation. The results showed that the heterotrophic and autotrophic denitrification can be combined successfully in HSHAD mesocosms, and achieve satisfactory nitrate removal performance. The average NO3−-N removal efficiency and denitrification rate of HSHAD were 94.4% and 1.3 g NO3−-N m−3·d−1 in steady phase II (7–118 d). Most nitrate was reduced by heterotrophic denitrification with sufficient organic carbon in phase I (0–6 d) and II, i.e., the C/N ratio exceeded 4.0, and no significant difference of nitrate removal capacity was observed between HSHAD and HHD mesocosms. During phase III (119–273 d), sulfur autotrophic denitrification gradually dominated the HSHAD process with the C/N ratio less than 4.0, and HSHAD mesocosms obtained higher NO3−-N removal efficiency and denitrification rate (79.1% and 1.1 g NO3−-N m−3·d−1) than HHD mesocosms (65.3% and 1.0 g NO3−-N m−3·d−1). As a whole, HSHAD mesocosms removed 58.8 mg NO3−-N more than HHD mesocosms. pH fluctuated between 6.9–9.0 without any pH buffer. In general, HSHAD mesocosms were more stable and efficient than HHD mesocosms for NO3−-N removal from agricultural runoff during long-term operation. The denitrificans containing narG (1.67 × 108 ± 1.28 × 107 copies g−1 mixture-soil−1), nirS (8.25 × 107 ± 8.95 × 106 copies g−1 mixture-soil−1), and nosZ (1.56 × 106 ± 1.60 × 105 copies g−1 mixture-soil−1) of litter bags and bottoms in HSHAD were higher than those in HHD, which indicated that the combined heterotrophic and autotrophic denitrification can increase the abundance of denitrificans containing narG, nirS, and nosZ, thus leading to better denitrification performance.

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2913
Author(s):  
Feng Liu ◽  
Suqin Wang ◽  
Xuezhi Zhang ◽  
Feiyue Qian ◽  
Yaobing Wang ◽  
...  

Contamination of wastewater with organic-limited nitrates has become an urgent problem in wastewater treatment. The cooperating heterotrophic with sulfur autotrophic denitrification is an alternative process and the efficiency has been assessed in many studies treating simulated wastewater under different operating conditions. However, due to the complex and diverse nature of actual wastewater, more studies treating actual wastewater are still needed to evaluate the feasibility of collaborative denitrification. In this study, lab-scale experiments were performed with actual nitrate polluted water of two different concentrations, with glucose and sodium thiosulfate introduced as mixed electron donors in the coupling sulfur-based autotrophic and heterotrophic denitrification. Results showed that the optimum denitrification performance was exhibited when the influent substrate mass ratio of C/N/S was 1.3/1/1.9, with a maximum denitrification rate of 3.52 kg NO3−-N/(m3 day) and nitrate removal efficiency of 93% in the coupled systems. Illumina high-throughput sequencing analysis revealed that autotrophic, facultative, and heterotrophic bacteria jointly contributed to high nitrogen removal efficiency. The autotrophic denitrification maintained as the predominant process, while the second most prevalent denitrification process gradually changed from heterotrophic to facultative with the increase of influent concentration at optimum C/N/S ratio conditions. Furthermore, the initiation of dissimilatory nitrate reduction to ammonium (DNRA) was very pivotal in promoting the entire denitrification process. These results suggested that sulfur-based autotrophic coupled with heterotrophic denitrifying process is an alternative and promising method to treat nitrate containing wastewater.


2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


2006 ◽  
Vol 53 (12) ◽  
pp. 91-99 ◽  
Author(s):  
I. Manconi ◽  
A. Carucci ◽  
P. Lens ◽  
S. Rossetti

The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effect on theN-removal efficiency, the S-removal efficiency and the product formation during anoxic oxidation of sulphide. One hundred per cent removal of both nitrate and sulphide was achieved at a NLR of 7.96 mmol N·L−1·d−1 (111.44 mg NO3−-N·L−1·d−1) and at a N/S ratio of 0.89 with complete oxidation of sulphide to sulphate. The oxygen level in the reactor (10%) was found to influence the N-removal efficiency by inhibiting the denitrification process. Moreover, chemical (or biological) oxidation of sulphide with oxygen occurred, resulting in a loss of the electron donor. FISH analysis was carried out to study the microbial population in the system.


2021 ◽  
Vol 267 ◽  
pp. 02021
Author(s):  
Hengyuan Liu ◽  
Chenhe Zhang

The biofilm-electrode reactor coupled with sulfur autotrophic denitrification process (BER-SAD) was used to remove nitrate in groundwater, and the effect of current intensity on the denitrification characteristics of the coupled process was explored. Current intensity had a great influence on the denitrification effect of the coupled process, the maximum nitrate removal efficiency of 99.9% and lowest nitrite production were gained under the optimum current density of 100 mA. Moreover, the accumulation concentration of SO42- increased gradually with the increase of current intensity. With the increase of current intensity, the proportion of hydrogen autotrophic denitrification decreased, while the proportion of sulfur autotrophic denitrification increased.


Author(s):  
Qiong Wen ◽  
Junfeng Su ◽  
Guoqing Li ◽  
Tinglin Huang ◽  
Lei Xue ◽  
...  

Abstract An efficient immobilized denitrification bioreactor functioning under anaerobic conditions was developed by combining bacterial immobilization technology with iron-carbon (Fe–C) particles. The effects of key factors on nitrate (NO3 −–N) removal efficiency were invested, such as the carbon-nitrogen ratio (C/N), pH and hydraulic retention time (HRT). Experimental results show that 100.00% NO3 −–N removal efficiency and a low level of nitrite (NO2 −–N) accumulation less than 0.05 mg L−1 were obtained under the condition of a C/N ratio of 3, pH 7.0 and HRT of 6 h. Meteorological chromatographic analysis showed that the final product of denitrification was mainly nitrogen (N2). The main component of precipitation formed in the bioreactor was characterized as Fe3O4 by X-ray diffraction. High-throughput sequencing analysis indicated that the dominant bacterial class in the Fe–C bioreactor was Gammaproteobacteria, while the dominant genera were Zoogloea and Azospira, the relative abundances of which were as high as 23.25 and 15.43%, respectively.


2003 ◽  
Vol 47 (1) ◽  
pp. 237-244 ◽  
Author(s):  
S.E. Oh ◽  
M.S. Bum ◽  
Y.B. Yoo ◽  
A. Zubair ◽  
I.S. Kim

The effect of various organic compounds were tested using lab-scale batch reactors. At sufficient alkalinity, the initial nitrate nitrogen concentration of 100 mg/L was completely reduced in all batch reactors. Sulfate production decreased by the addition of organics. The concentration range of organics used in this experiment did not inhibit autotrophic denitrification except for propionate. Propionate inhibited autotrophic denitrification a little, indicated by a lower sulfate production rate. Biomass in suspension increased with higher initial organic concentrations, showing higher DOC consumption. As the concentration of organics increased, alkalinity increased accordingly. Under the conditions of low alkalinity, in the case of a control reactor without organics, only about 30% of the initial nitrate was reduced. With half the theoretically required dosage of methanol, the denitrification rates increased slightly. When ethanol, acetate, and propionate were used, denitrification went to completion. When excess organics was added, however, sulfate production was significantly decreased. Interestingly, even when small amounts of organics were added, autotrophic denitrification was promoted as indicated by the sulfate production.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 233-238 ◽  
Author(s):  
E.-W. Kim ◽  
J.-H. Bae

Alkalinity requirement and the possibility of simultaneous heterotrophic denitrification during sulfur-utilizing autotrophic denitrification were evaluated with sulfur packed bed reactors (SPBRs). SPBR showed >99% NO3--N removal efficiency at influent NO3--N concentration of 1,500 mg/L, although 25-40% of the added NO3--N was recovered as N2O. Complete denitrification without N2O production was achieved when the influent NO3--N concentration decreased to 750 mg/L. When nitrified landfill leachate containing 602–687 mg/L of NO3--N was fed to SPBR, denitrification efficiency was greater than 98%. During leachate treatment, alkalinity consumption was 3.25–3.76 g CaCO3/g NO3--N removed. Most of denitrification activity occurred within bottom 11.5 cm of sulfur layer, meaning that effective HRT of 2.34 hours was enough for the complete denitrification at the loading rate of 2.2 kg NO3--N/m3-day. Complete denitrification was also achieved when methanol was added to nitrified leachate without alkalinity addition. In this case, alkalinity produced by heterotrophs was used for sulfur-utilizing denitrification.


2017 ◽  
Vol 75 (10) ◽  
pp. 2434-2442 ◽  
Author(s):  
Kang Liang ◽  
Yanran Dai ◽  
Feihua Wang ◽  
Wei Liang

Effects of seasons and hydraulic loading rates (HLR) on the treatment performance and the response of the microbial community of vertical flow constructed wetland treating tail water were investigated. The seasonal treatment performance was evaluated at four HLR of 125, 250, 375 and 500 mm/d, respectively. The microbial community was detected by MiSeq Illumina platform at HLR 125 and 375 mm/d. The wetland showed significantly higher chemical oxygen demand (COD) and total nitrogen (TN), total phosphorus (TP) at HLR 125 mm/d, compared with other HLR. Overall removal efficiency was 61.47%, 71.40% and 76.31% for COD, TN and TP, respectively, while no significant differences for COD, TN and TP removal were found at HLR of 250, 375 and 500 mm/d. The best removal efficiency for COD and TN was achieved in summer and autumn, while the best TP removal was achieved in winter. Nitrification bacteria (Nitrosomonas and Nitrospira) were significantly higher in HLR 125 mm/d, whereas sequences associated with denitrification had no significant difference at the two HLR. The results can partially explain the significantly higher NH4+-N removal in HLR 125 mm/d and relatively low nitrogen performance in winter.


Author(s):  
Yuqian Hou ◽  
Shaoju Cheng ◽  
Mengliang Wang ◽  
Chenyong Zhang ◽  
Bo Liu

In this study, anammox, sulfur-based autotrophic denitrification, and heterotrophic denitrification (A/SAD/HD) were coupled in an expanded granular sludge bed (EGSB) reactor to explore the feasibility of enhancing denitrification performance by adjusting the S2O32−/NO3− (S/N) ratio to accommodate dynamic influents. The results indicated that the optimal influent conditions occurred when the conversion efficiency of ammonium (CEA) was 55%, the S/N ratio was 1.24, and the chemical oxygen demand (COD) was 50 mg/L, which resulted in a total nitrogen removal efficiency (NRE) of 95.0% ± 0.5%. The S/N ratio regulation strategy was feasible when the influent COD concentration was less than 100 mg/L and the CEA was between 57% and 63%. Characterization by 16S rRNA sequencing showed that Candidatus Jettenia might have contributed the most to anammox, while Thiobacillus and Denitratisoma were the dominant taxa related to denitrification. The findings of this study provide insights into the effects of CEA and COD on the performance of the A/SAD/HD system and the feasibility of the S/N ratio regulation strategy.


2014 ◽  
Vol 49 (3) ◽  
pp. 273-284 ◽  
Author(s):  
Mi-Sug Kim ◽  
Dong-Heui Kwak

This study aims at estimating nanoparticle typed zero-valent iron (nZVI) process as an advanced nitrogen removal technique. To focus on investigating characteristics and effects of nZVI on nitrogen removal for sewage treatment, batch reactor experiments were conducted to reduce excessive nitrate nitrogen (NO3-N). To improve NO3-N removal efficiency and to find a supporter or alternative of nZVI, silica sand, synthetic zeolite, and a mixture of silica sand, synthetic zeolite, and nZVI were used in the experiments. As a result of this study, the chemical denitrification by nZVI attracted on the magnet surface may be useful for total nitrogen removal in conventional sewage and wastewater treatment plants under the optimal conditions, and application of silica sand also is an excellent adsorbent or media for N-component removal and a supporter as well. This study concludes the end product in this study may be nitrogen gas (N2) through Fe0 reaction with O2 and NO3− in aerobic nZVI (Fe0)–H2O system. Future study is required to examine the competition of nZVI between nitrate and many other compounds depending upon various experimental conditions for improving the nitrate removal efficiency and impeding the ammonium generation.


Sign in / Sign up

Export Citation Format

Share Document