scholarly journals Epidemiology of Shiga Toxin-Producing Escherichia coli Infections in Southern Italy after Implementation of Symptom-Based Surveillance of Bloody Diarrhea in the Pediatric Population

Author(s):  
Daniela Loconsole ◽  
Mario Giordano ◽  
Francesca Centrone ◽  
Marisa Accogli ◽  
Daniele Casulli ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) infections result in a significant public health impact because of the severity of the disease that, in young children especially, can lead to hemolytic–uremic syndrome (HUS). A rise in the number of HUS cases was observed in the Apulia region of Italy from 2013 to 2017, and so, in 2018, a symptom-based surveillance system for children with bloody diarrhea (BD) was initiated in order to detect and manage STEC infections. The objective of the study was to describe the epidemiology of STEC infections in children from June 2018 to August 2019. Children <15 years old with BD were hospitalized and tested for STEC. Real-time PCR for virulence genes (stx1, stx2, eae) and serogroup identification tests were performed on stool samples/rectal swabs of cases. STEC infection was detected in 87 (10.6%) BD cases. The median age of STEC cases was 2.7 years, and 60 (68.9%) were <4. Of these 87 cases, 12 (13.8%) came from households with diarrhea. The reporting rate was 14.2/100,000, with the highest incidence in cases from the province of Bari (24.2/100,000). Serogroups O26 and O111 were both detected in 22/87 (25.3%) cases. Co-infections occurred in 12.6% of cases (11/87). Twenty-nine STEC were positive for stx1, stx2, and eae. Five cases (5.7%) caused by O26 (n = 2), O111 (n = 2), and O45 (n = 1) developed into HUS. A risk-oriented approach based on the testing of children with BD during the summer may represent a potentially beneficial option to improve the sensitivity of STEC surveillance, not only in Italy but also in the context of Europe as a whole.

2020 ◽  
Vol 8 (11) ◽  
pp. 1801
Author(s):  
Michael Bording-Jorgensen ◽  
Brendon D. Parsons ◽  
Gillian A.M. Tarr ◽  
Binal Shah-Gandhi ◽  
Colin Lloyd ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) are associated with acute gastroenteritis worldwide, which induces a high economic burden on both healthcare and individuals. Culture-independent diagnostic tests (CIDT) in frontline microbiology laboratories have been implemented in Alberta since 2019. The objectives of this study were to determine the association between gene detection and culture positivity over time using STEC microbiological clearance samples and also to establish the frequency of specimen submission. Both stx genes’ amplification by real-time PCR was performed with DNA extracted from stool samples using the easyMAG system. Stools were inoculated onto chromogenic agar for culture. An association between gene detection and culture positivity was found to be independent of which stx gene was present. CIDT can provide rapid reporting with less hands-on time and technical expertise. However, culture is still important for surveillance and early cluster detection. In addition, stool submissions could be reduced from daily to every 3–5 days until a sample is negative by culture.


Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1296-1305
Author(s):  
Ying Hua ◽  
Milan Chromek ◽  
Anne Frykman ◽  
Cecilia Jernberg ◽  
Valya Georgieva ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-3
Author(s):  
Louis Manière ◽  
Camille Domenger ◽  
Boubou Camara ◽  
Diane Giovannini ◽  
Paolo Malvezzi ◽  
...  

We herein describe the first case of thrombotic microangiopathy (TMA) which was related to Shiga toxin producing-Escherichia Coli Hemolytic and Uremic Syndrome (STEC-HUS) after lung transplantation. His maintenance immunosuppression relied on tacrolimus plus mycophenolic acid. TMA was treated with plasma exchanges (PE) (fresh frozen plasma substitution). After five days of PE, platelets count and lactate dehydrogenase level normalized, whereas hemoglobin continued to gradually decrease and no improvement in kidney function was observed. After seven PE sessions, all TMA biological signs resolved. However, kidney function did not improve, and the patient still required chronic dialysis.


Blood ◽  
2015 ◽  
Vol 126 (18) ◽  
pp. 2085-2090 ◽  
Author(s):  
Edward M. Conway

Abstract Hemolytic-uremic syndrome (HUS) is a thrombotic microangiopathy that is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Excess complement activation underlies atypical HUS and is evident in Shiga toxin–induced HUS (STEC-HUS). This Spotlight focuses on new knowledge of the role of Escherichia coli–derived toxins and polyphosphate in modulating complement and coagulation, and how they affect disease progression and response to treatment. Such new insights may impact on current and future choices of therapies for STEC-HUS.


2010 ◽  
Vol 73 (1) ◽  
pp. 88-91 ◽  
Author(s):  
C. ZWEIFEL ◽  
N. GIEZENDANNER ◽  
S. CORTI ◽  
G. KRAUSE ◽  
L. BEUTIN ◽  
...  

Food is an important vehicle for transmission of Shiga toxin–producing Escherichia coli (STEC). To assess the potential public health impact of STEC in Swiss raw milk cheese produced from cow's, goat's, and ewe's milk, 1,422 samples from semihard or hard cheese and 80 samples from soft cheese were examined for STEC, and isolated strains were further characterized. By PCR, STEC was detected after enrichment in 5.7% of the 1,502 raw milk cheese samples collected at the producer level. STEC-positive samples comprised 76 semihard, 8 soft, and 1 hard cheese. By colony hybridization, 29 STEC strains were isolated from 24 semihard and 5 soft cheeses. Thirteen of the 24 strains typeable with O antisera belonged to the serogroups O2, O22, and O91. More than half (58.6%) of the 29 strains belonged to O:H serotypes previously isolated from humans, and STEC O22:H8, O91:H10, O91:H21, and O174:H21 have also been identified as agents of hemolytic uremic syndrome. Typing of Shiga toxin genes showed that stx1 was only found in 2 strains, whereas 27 strains carried genes encoding for the Stx2 group, mainly stx2 and stx2vh-a/b. Production of Stx2 and Stx2vh-a/b subtypes might be an indicator for a severe outcome in patients. Nine strains harbored hlyA (enterohemorrhagic E. coli hemolysin), whereas none tested positive for eae (intimin). Consequently, semihard and hard raw milk cheese may be a potential source of STEC, and a notable proportion of the isolated non-O157 STEC strains belonged to serotypes or harbored Shiga toxin gene variants associated with human infections.


2016 ◽  
Vol 14 (1) ◽  
pp. 63-68 ◽  
Author(s):  
MM Akter ◽  
S Majumder ◽  
KH MNH Nazir ◽  
M Rahman

Shiga toxin-producing Escherichia coli (STEC) are zoonotically important pathogen which causes hemorrhagic colitis, diarrhea, and hemolytic uremic syndrome in animals and humans. The present study was designed to isolate and identify the STEC from fecal samples of diarrheic cattle. A total of 35 diarrheic fecal samples were collected from Bangladesh Agricultural University (BAU) Veterinary Teaching Hospital. The samples were primarily examined for the detection of E. coli by cultural, morphological and biochemical characteristics, followed by confirmation of the isolates by Polymerase Chain Reaction (PCR) using gene specific primers. Later, the STEC were identified among the isolated E. coli through detection of Stx-1 and Stx-2 genes using duplex PCR. Out of 35 samples, 25 (71.43%) isolates were confirmed to be associated with E. coli, of which only 7 (28%) isolates were shiga toxin producers, and all of them were positive for Stx-1. However, no Stx-2 positive isolate could be detected. From this study, it may be concluded that cattle can act as a reservoir of STEC which may transmit to human or other animals.J. Bangladesh Agril. Univ. 14(1): 63-68, June 2016


2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


Sign in / Sign up

Export Citation Format

Share Document