scholarly journals The Impact of Fluid Loss and Carbohydrate Consumption during Exercise, on Young Cyclists’ Fatigue Perception in Relation to Training Load Level

Author(s):  
Leonardo Cesanelli ◽  
Berta Ylaitė ◽  
Giuseppe Messina ◽  
Daniele Zangla ◽  
Stefania Cataldi ◽  
...  

High-level young athletes need to face a wide spectrum of stressors on their journey to élite categories. The aims of the present study are (i) to evaluate session rate of perceived exertion (sRPE) at different training impulse (TRIMP) categories and the correlations between these two variables and, (ii) evaluate the correlations between sRPE, fluid loss, and carbohydrate consumption during exercise. Data on Edward’s TRIMP, sRPE, body mass loss pre- and post- exercise (∆), and carbohydrate consumption (CHO/h) during exercise have been acquired from eight male junior cyclists during a competitive season. One-way ANOVA and correlation analysis with linear regression have been performed on acquired data. sRPE resulted in a significant difference in the three TRIMP categories (p < 0.001). sRPE resulted in being very largely positively associated with TRIMP values (p < 0.001; R = 0.71). ∆ as well as CHO/h was largely negatively related with sRPE in all TRIMP categories (p < 0.001). The results confirmed the role of fluid balance and carbohydrate consumption on the perception of fatigue and fatigue accumulation dynamics independently from the training load. Young athletes’ training load monitoring and nutritional-hydration support represent important aspects in athlete’s exercise-induced fatigue management.

2015 ◽  
Vol 10 (8) ◽  
pp. 1023-1028 ◽  
Author(s):  
Vincenzo Manzi ◽  
Antonio Bovenzi ◽  
Carlo Castagna ◽  
Paola Sinibaldi Salimei ◽  
Maurizio Volterrani ◽  
...  

Purpose:To assess the distribution of exercise intensity in long-distance recreational athletes (LDRs) preparing for a marathon and to test the hypothesis that individual perception of effort could provide training responses similar to those provided by standardized training methodologies.Methods:Seven LDRs (age 36.5 ± 3.8 y) were followed during a 5-mo training period culminating with a city marathon. Heart rate at 2.0 and 4.0 mmol/L and maximal heart rate were used to establish 3 intensity training zones. Internal training load (TL) was assessed by training zones and TRIMPi methods. These were compared with the session-rating-of-perceived-exertion (RPE) method.Results:Total time spent in zone 1 was higher than in zones 2 and 3 (76.3% ± 6.4%, 17.3% ± 5.8%, and 6.3% ± 0.9%, respectively; P = .000 for both, ES = 0.98, ES = 0.99). TL quantified by session-RPE provided the same result. The comparison between session-RPE and training-zones-based methods showed no significant difference at the lowest intensity (P = .07, ES = 0.25). A significant correlation was observed between TL RPE and TL TRIMPi at both individual and group levels (r = .79, P < .001). There was a significant correlation between total time spent in zone 1 and the improvement at the running speed of 2 mmol/L (r = .88, P < .001). A negative correlation was found between running speed at 2 mmol/L and the time needed to complete the marathon (r = –.83, P < .001).Conclusions:These findings suggest that in recreational LDRs most of the training time is spent at low intensity and that this is associated with improved performances. Session-RPE is an easy-to-use training method that provides responses similar to those obtained with standardized training methodologies.


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 94 ◽  
Author(s):  
Gabriel Sanders ◽  
Brian Boos ◽  
Frank Shipley ◽  
Corey Peacock

The purpose of the study was to assess glycogen content of the rectus femoris (RF) muscles utilizing high-frequency ultrasound throughout an intensive, nine-day preseason training period in NCAA division I volleyball athletes. In the morning prior to the beginning of practice, athletes (n = 13) left and right RF muscles were assessed via ultrasound to quantify muscle fuel ratings (0–100 score range). The recommended location of the RF ultrasound scans were based on manufacturer guidelines, and the same technician recorded the daily measurements. To assess daily training load, session ratings of perceived exertion (s-RPE) were utilized. A paired t-test revealed a large significant difference between left (51.7 ± 17.9) and right (32.8 ± 17.4) RF muscle fuel ratings (p < 0.001). There was also a major effect of time on s-RPE (p < 0.001) and left (dominant) RF fuel rating (p = 0.001). s-RPE decreased from the beginning to the end of the training camp. However, left RF fuel ratings increased from the first to the second day, then remained elevated all throughout the preseason. In conclusion, all athletes were left-leg dominant and had a 57.6% bilateral asymmetry between their left and right RF muscle fuel ratings despite changes in training load. High-frequency ultrasounds are a noninvasive assessment tool that can determine glycogen replenishment asymmetries in the RF.


2019 ◽  
Vol 14 (10) ◽  
pp. 1338-1343
Author(s):  
Thiago S. Duarte ◽  
Danilo L. Alves ◽  
Danilo R. Coimbra ◽  
Bernardo Miloski ◽  
João C. Bouzas Marins ◽  
...  

Purpose: To analyze the technical and tactical training load in professional volleyball players, using subjective internal training load (session rating of perceived exertion  [SRPE]) and objective internal training load (training impulse of the heart rate [HR]) and the relationship between them. Methods: The sample was composed of 15 male professional volleyball players. They were monitored during 37 training sessions that included both technical (n = 23) and tactical (n = 14) training. Technical and training load was calculated using SRPE and training impulse of the HR. Results: Significant correlations were found between the methods in tactical (r = .616) and technical training (r = −.414). Furthermore, it was noted that technical training occurs up to 80% of HRmax (zone 3) and tactical training between 70% and 90% of HRmax (zones 3–4). Conclusions: The training impulse of the HR method has proved to be effective for training-load control during tactical training. However, it was limited compared with technical training. Thus, the use of SRPE is presented as a more reliable method in the different types of technical training in volleyball.


2020 ◽  
Vol 15 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Teun van Erp ◽  
Dajo Sanders ◽  
Jos J. de Koning

Purpose: To describe the training intensity and load characteristics of professional cyclists using a 4-year retrospective analysis. Particularly, this study aimed to describe the differences in training characteristics between men and women professional cyclists. Method: For 4 consecutive years, training data were collected from 20 male and 10 female professional cyclists. From those training sessions, heart rate, rating of perceived exertion, and power output (PO) were analyzed. Training intensity distribution as time spent in different heart rate and PO zones was quantified. Training load was calculated using different metrics such as Training Stress Score, training impulse, and session rating of perceived exertion. Standardized effect size is reported as Cohen’s d. Results: Small to large higher values were observed for distance, duration, kilojoules spent, and (relative) mean PO in men’s training (d = 0.44–1.98). Furthermore, men spent more time in low-intensity zones (ie, zones 1 and 2) compared with women. Trivial differences in training load (ie, Training Stress Score and training impulse) were observed between men’s and women’s training (d = 0.07–0.12). However, load values expressed per kilometer were moderately (d = 0.67–0.76) higher in women compared with men’s training. Conclusions: Substantial differences in training characteristics exist between male and female professional cyclists. Particularly, it seems that female professional cyclists compensate their lower training volume, with a higher training intensity, in comparison with male professional cyclists.


2015 ◽  
Vol 10 (6) ◽  
pp. 767-773 ◽  
Author(s):  
Alexandre Moreira ◽  
Tom Kempton ◽  
Marcelo Saldanha Aoki ◽  
Anita C. Sirotic ◽  
Aaron J. Coutts

Purpose: To examine the impact of varying between-matches microcycles on training characteristics (ie, intensity, duration, and load) in professional rugby league players and to report on match load related to these between-matches microcycles. Methods: Training-load data were collected during a 26-wk competition period of an entire season. Training load was measured using the session rating of perceived exertion (session-RPE) method for every training session and match from 44 professional rugby league players from the same National Rugby League team. Using the category-ratio 10 RPE scale, the training intensity was divided into 3 zones (low <4 AU, moderate ≥4-≤7 AU, and high >7 AU). Three different-length between-matches recovery microcycles were used for analysis: 5−6 d, 7−8 d, and 9−10 d. Results: A total of 3848 individual sessions were recorded. During the shorter-length between-matches microcycles (5−6 d), significantly lower training load was observed. No significant differences for subsequent match load or intensity were identified between the various match recovery periods. Overall, 16% of the training sessions were completed at the low-intensity zone, 61% at the moderate-intensity zone, and 23% at the high-intensity zone. Conclusions: The findings demonstrate that rugby league players undertake higher training load as the length of between-matches microcycles is increased. The majority of in-season training of professional rugby league players was at moderate intensity, and a polarized approach to training that has been reported in elite endurance athletes does not occur in professional rugby league.


2014 ◽  
Vol 9 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Dan Weaving ◽  
Phil Marshall ◽  
Keith Earle ◽  
Alan Nevill ◽  
Grant Abt

Purpose:This study investigated the effect of training mode on the relationships between measures of training load in professional rugby league players.Methods:Five measures of training load (internal: individualized training impulse, session rating of perceived exertion; external—body load, high-speed distance, total impacts) were collected from 17 professional male rugby league players over the course of two 12-wk preseason periods. Training was categorized by mode (small-sided games, conditioning, skills, speed, strongman, and wrestle) and subsequently subjected to a principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subjected to a varimax rotation.Results:Small-sided games and conditioning extracted 1 principal component, explaining 68% and 52% of the variance, respectively. Skills, wrestle, strongman, and speed extracted 2 principal components each explaining 68%, 71%, 72%, and 67% of the variance, respectively.Conclusions:In certain training modes the inclusion of both internal and external training-load measures explained a greater proportion of the variance than any 1 individual measure. This would suggest that in training modes where 2 principal components were identified, the use of only a single internal or external training-load measure could potentially lead to an underestimation of the training dose. Consequently, a combination of internal- and external-load measures is required during certain training modes.


Author(s):  
Carl Foster ◽  
Daniel Boullosa ◽  
Michael McGuigan ◽  
Andrea Fusco ◽  
Cristina Cortis ◽  
...  

The session rating of perceived exertion (sRPE) method was developed 25 years ago as a modification of the Borg concept of rating of perceived exertion (RPE), designed to estimate the intensity of an entire training session. It appears to be well accepted as a marker of the internal training load. Early studies demonstrated that sRPE correlated well with objective measures of internal training load, such as the percentage of heart rate reserve and blood lactate concentration. It has been shown to be useful in a wide variety of exercise activities ranging from aerobic to resistance to games. It has also been shown to be useful in populations ranging from patients to elite athletes. The sRPE is a reasonable measure of the average RPE acquired across an exercise session. Originally designed to be acquired ∼30 minutes after a training bout to prevent the terminal elements of an exercise session from unduly influencing the rating, sRPE has been shown to be temporally robust across periods ranging from 1 minute to 14 days following an exercise session. Within the training impulse concept, sRPE, or other indices derived from sRPE, has been shown to be able to account for both positive and negative training outcomes and has contributed to our understanding of how training is periodized to optimize training outcomes and to understand maladaptations such as overtraining syndrome. The sRPE as a method of monitoring training has the advantage of extreme simplicity. While it is not ideal for the precise recording of the details of the external training load, it has large advantages relative to evaluating the internal training load.


2020 ◽  
Vol 24 (4) ◽  
pp. 175-182
Author(s):  
Valeriya G. Volkova ◽  
Amanda M. Black ◽  
Sarah J. Kenny

Training load has been identified as a risk factor for musculoskeletal injury in sport, but little is known about the effects of training load in dance. The purpose of this study was to describe adolescent dancers' internal training load (ITL) and compare objective and subjective measures of ITL using heart rate (HR) training impulse methods and session Rating of Perceived Exertion (sRPE), respectively. Fifteen female elite adolescent ballet dancers at a vocational dance school volunteered to participate in the study. Internal training load data using HR and sRPE were collected over 9 days of multiple technique classes at the midpoint of the dancers' training year. Heart rate data were quantified using Edwards' training impulse (ETRIMP) and Banister's training impulse (BTRIMP), and sRPE was estimated from the modified Borg 0 to 10 scale and class duration. Descriptive statistics (median [M], and interquartile range [IQR]) were determined in arbitrary units (AU), and were as follows for all classes combined: ETRIMP: M = 134 AU (IQR = 79 to 244 AU); BTRIMP: M = 67 AU (IQR = 38 to 109); sRPE: M = 407 AU (IQR = 287 to 836 AU). The association and agreement between objective and subjective ITL measures in ballet and pointe class was assessed using Spearman correlations (rs) and adjusted Bland-Altman 95% limits of agreement (LOA), respectively, with alpha set at 0.05. A significant moderate positive correlation was found between ETRIMP and BTRIMP in pointe class (rρ = 0.8000, p = 0.0031). The mean difference (LOA) between ETRIMP and BTRIMP was 121 AU (33 to 210 AU) in ballet and 43 AU (-3 to 88 AU) in pointe. It is concluded that some, but not all, measures of ITL in elite adolescent ballet dancers are comparable. Additional research is needed to examine the utilization of ITL measures for evaluating dance-related injury risk, as well as the application of ITL to inform the development of effective injury prevention strategies for this high-risk population.


2019 ◽  
Vol 14 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Teun van Erp ◽  
Carl Foster ◽  
Jos J. de Koning

Purpose: The relationship between various training-load (TL) measures in professional cycling is not well explored. This study investigated the relationship between mechanical energy spent (in kilojoules), session rating of perceived exertion (sRPE), Lucia training impulse (LuTRIMP), and training stress score (TSS) in training, races, and time trials (TT). Methods: For 4 consecutive years, field data were collected from 21 professional cyclists and categorized as being collected in training, racing, or TTs. Kilojoules (kJ) spent, sRPE, LuTRIMP, and TSS were calculated, and the correlations between the various TLs were made. Results: 11,655 sessions were collected, from which 7596 sessions had heart-rate data and 5445 sessions had an RPE score available. The r between the various TLs during training was almost perfect. The r between the various TLs during racing was almost perfect or very large. The r between the various TLs during TTs was almost perfect or very large. For all relationships between TSS and 1 of the other measurements of TL (kJ spent, sRPE, and LuTRIMP), a significant different slope was found. Conclusion: kJ spent, sRPE, LuTRIMP, and TSS all have a large or almost perfect relationship with each other during training, racing, and TTs, but during racing, both sRPE and LuTRIMP have a weaker relationship with kJ spent and TSS. Furthermore, the significant different slope of TSS vs the other measurements of TL during training and racing has the effect that TSS collected in training and road races differs by 120%, whereas the other measurements of TL (kJ spent, sRPE, and LuTRIMP) differ by only 73%, 67%, and 68%, respectively.


2008 ◽  
Vol 3 (1) ◽  
pp. 16-30 ◽  
Author(s):  
Jill Borresen ◽  
Michael I. Lambert

Purpose:To establish the relationship between a subjective (session rating of perceived exertion [RPE]) and 2 objective (training impulse [TRIMP]) and summated-heart-rate-zone (SHRZ) methods of quantifying training load and explain characteristics of the variance not accounted for in these relationships.Methods:Thirty-three participants trained ad libitum for 2 wk, and their heart rate (HR) and RPE were recorded to calculate training load. Subjects were divided into groups based on whether the regression equations over- (OVER), under- (UNDER), or accurately predicted (ACCURATE) the relationship between objective and subjective methods.Results:A correlation of r = .76 (95% CI: .56 to .88) occurred between TRIMP and session-RPE training load. OVER spent a greater percentage of training time in zone 4 of SHRZ (ie, 80% to 90% HRmax) than UNDER (46% ± 8% vs 25% ± 10% [mean ± SD], P = .008). UNDER spent a greater percentage of training time in zone 1 of SHRZ (ie, 50% to 60% HRmax) than OVER (15% ± 8% vs 3% ± 3%, P = .005) and ACCURATE (5% ± 3%, P = .020) and more time in zone 2 of SHRZ (ie, 60% to 70%HRmax) than OVER (17% ± 6% vs 7% ± 6%, P = .039). A correlation of r = .84 (.70 to .92) occurred between SHRZ and session-RPE training load. OVER spent proportionally more time in Zone 4 than UNDER (45% ± 8% vs 25% ± 10%, P = .018). UNDER had a lower training HR than ACCURATE (132 ± 10 vs 148 ± 12 beats/min, P = .048) and spent more time in zone 1 than OVER (15% ± 8% vs 4% ± 3%, P = .013) and ACCURATE (5% ± 3%, P = .015).Conclusions:The session-RPE method provides reasonably accurate assessments of training load compared with HR-based methods, but they deviate in accuracy when proportionally more time is spent training at low or high intensity.


Sign in / Sign up

Export Citation Format

Share Document