scholarly journals Morphological and Motor Fitness Determinants of Shotokan Karate Performance

Author(s):  
Paweł Przybylski ◽  
Arkadiusz Janiak ◽  
Piotr Szewczyk ◽  
Dariusz Wieliński ◽  
Katarzyna Domaszewska

The achievement of high performance levels in a complex structured sport such as karate is determined by the competitor’s physical fitness, fighting technique, tactics and mental state. This study aimed to identify the most important determinants of top-level performance in karate. Methods: The participants were 32 karate competitors (12 women and 20 men) aged 18–25 years. A series of tests measuring 11 anthropometric features was undertaken twice during a year, separated by a 6-week interval during a training camp at the Olympic Preparation Center in Walcz, Poland. Motor skills were measured with strength, speed, endurance, flexibility and reaction time tests. Special motor fitness was assessed with tests of karate technical skills. The results were subject to statistical analysis using multiple stepwise regression of the Polish Karate Federation ranking points as the dependent variable. Results: The multiple regression analysis revealed two main determinants of high scores in female and male karate competitors. In women, these were thigh circumference and the speed of the mawashi-geri-kick roundhouse technique (i.e., the maximum number of delivered kicks in 30 s), whilst for men they were the extent of the sideway leg swing to the highest possible height (yoko-geri) and general endurance assessed with the bent arm hang test. Conclusion: Karate training should account for the determinants of high-level competitive karate performance identified in this study. Strengthening the lower limbs, exercises increasing hip joint mobility, low position movements, performing leg techniques in various planes and applying external loads undoubtedly increase a karate athlete’s strength and lead to the development of a more extensive repertoire of karate leg techniques, especially at the highest-scoring head level (jodan).

Author(s):  
Jin Sik Yang ◽  
Jeong L. Sohn ◽  
Sung Tack Ro

In spite of the high performance characteristics of the solid oxide fuel cell / gas turbine (SOFC/GT) hybrid system, it is very difficult to maintain the high level performance under real application conditions, which generally require part-load operations. The performance loss of SOFC/GT hybrid systems under part-load operating conditions is closely related to that of the gas turbine. The power generated by the gas turbine in a hybrid system is much smaller than that generated by the SOFC. However, its contribution to the system efficiency is very important especially at part-load operating conditions. Therefore, to enhance the part-load performance of hybrid systems, it is useful to reduce the relative amount of power generated by a gas turbine that delivers lower performance than a SOFC. In the present study, several part-load operation strategies related to the gas turbine are studied and their impacts on the performance of a SOFC/GT hybrid system are discussed.


2014 ◽  
Vol 42 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Artur Struzik ◽  
Bogdan Pietraszewski ◽  
Jerzy Zawadzki

Abstract Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


2021 ◽  
pp. 1-7
Author(s):  
Haniel Fernandes

<b><i>Background:</i></b> Soccer is an extremely competitive sport, where the most match important moments can be defined in detail. Use of ergogenic supplements can be crucial to improve the performance of a high-performance athlete. Therefore, knowing which ergogenic supplements are important for soccer players can be an interesting strategy to maintain high level in this sport until final and decisive moments of the match. In addition, other supplements, such as dietary supplements, have been studied and increasingly referenced in the scientific literature. But, what if ergogenic supplements were combined with dietary supplements? This review brings some recommendations to improve performance of soccer athletes on the field through dietary and/or ergogenic supplements that can be used simultaneously. <b><i>Summary:</i></b> Soccer is a competitive sport, where the match important moments can be defined in detail. Thus, use of ergogenic supplements covered in this review can improve performance of elite soccer players maintaining high level in the match until final moments, such as creatine 3–5 g day<sup>−1</sup>, caffeine 3–6 mg kg<sup>−1</sup> BW around 60 min before the match, sodium bicarbonate 0.1–0.4 g kg<sup>−1</sup> BW starting from 30 to 180 min before the match, β-alanine 3.2 and 6.4 g day<sup>−1</sup> provided in the sustained-release tablets divided into 4 times a day, and nitrate-rich beetroot juice 60 g in 200 mL of water (6 mmol of NO3<sup>−</sup> L) around 120 min before match or training, including a combination possible with taurine 50 mg kg<sup>−1</sup> BW day<sup>−1</sup>, citrulline 1.2–3.4 g day<sup>−1</sup>, and arginine 1.2–6 g day<sup>−1</sup>. <b><i>Key Messages:</i></b> Soccer athletes can combine ergogenic and dietary supplements to improve their performance on the field. The ergogenic and dietary supplements used in a scientifically recommended dose did not demonstrate relevant side effects. The use of various evidence-based supplements can add up to further improvement in the performance of the elite soccer players.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Charalampos Dimitriadis ◽  
Ivoni Fournari-Konstantinidou ◽  
Laurent Sourbès ◽  
Drosos Koutsoubas ◽  
Stelios Katsanevakis

Understanding the interactions among invasive species, native species and marine protected areas (MPAs), and the long-term regime shifts in MPAs is receiving increased attention, since biological invasions can alter the structure and functioning of the protected ecosystems and challenge conservation efforts. Here we found evidence of marked modifications in the rocky reef associated biota in a Mediterranean MPA from 2009 to 2019 through visual census surveys, due to the presence of invasive species altering the structure of the ecosystem and triggering complex cascading effects on the long term. Low levels of the populations of native high-level predators were accompanied by the population increase and high performance of both native and invasive fish herbivores. Subsequently the overgrazing and habitat degradation resulted in cascading effects towards the diminishing of the native and invasive invertebrate grazers and omnivorous benthic species. Our study represents a good showcase of how invasive species can coexist or exclude native biota and at the same time regulate or out-compete other established invaders and native species.


Computers ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 63
Author(s):  
Fahd Alhaidari ◽  
Taghreed Zayed Balharith

Recently, there has been significant growth in the popularity of cloud computing systems. One of the main issues in building cloud computing systems is task scheduling. It plays a critical role in achieving high-level performance and outstanding throughput by having the greatest benefit from the resources. Therefore, enhancing task scheduling algorithms will enhance the QoS, thus leading to more sustainability of cloud computing systems. This paper introduces a novel technique called the dynamic round-robin heuristic algorithm (DRRHA) by utilizing the round-robin algorithm and tuning its time quantum in a dynamic manner based on the mean of the time quantum. Moreover, we applied the remaining burst time of the task as a factor to decide the continuity of executing the task during the current round. The experimental results obtained using the CloudSim Plus tool showed that the DRRHA significantly outperformed the competition in terms of the average waiting time, turnaround time, and response time compared with several studied algorithms, including IRRVQ, dynamic time slice round-robin, improved RR, and SRDQ algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1281
Author(s):  
Min Kyoung Kim ◽  
Huy Viet Le ◽  
Dong Joo Kim

This study investigated the electromechanical response of smart ultra-high-performance concretes (smart UHPCs), containing fine steel slag aggregates (FSSAs) and steel fibers as functional fillers, under external loads corresponding to different measurement methods. Regardless of different measurement methods of electrical resistance, the smart UHPCs under compression showed a clear reduction in their electrical resistivity. However, under tension, their electrical resistivity measured from direct current (DC) measurement decreased, whereas that from alternating current (AC) measurement increased. This was because the electrical resistivity, from DC measurement, of smart UHPCs was primarily dependent on fiber crack bridging, whereas that from AC measurement was dependent on tunneling effects.


Author(s):  
Umar Ibrahim Minhas ◽  
Roger Woods ◽  
Georgios Karakonstantis

AbstractWhilst FPGAs have been used in cloud ecosystems, it is still extremely challenging to achieve high compute density when mapping heterogeneous multi-tasks on shared resources at runtime. This work addresses this by treating the FPGA resource as a service and employing multi-task processing at the high level, design space exploration and static off-line partitioning in order to allow more efficient mapping of heterogeneous tasks onto the FPGA. In addition, a new, comprehensive runtime functional simulator is used to evaluate the effect of various spatial and temporal constraints on both the existing and new approaches when varying system design parameters. A comprehensive suite of real high performance computing tasks was implemented on a Nallatech 385 FPGA card and show that our approach can provide on average 2.9 × and 2.3 × higher system throughput for compute and mixed intensity tasks, while 0.2 × lower for memory intensive tasks due to external memory access latency and bandwidth limitations. The work has been extended by introducing a novel scheduling scheme to enhance temporal utilization of resources when using the proposed approach. Additional results for large queues of mixed intensity tasks (compute and memory) show that the proposed partitioning and scheduling approach can provide higher than 3 × system speedup over previous schemes.


Sign in / Sign up

Export Citation Format

Share Document