scholarly journals Making Biodegradable Seedling Pots from Textile and Paper Waste—Part A: Factors Affecting Tensile Strength

Author(s):  
Jeanger P. Juanga-Labayen ◽  
Qiuyan Yuan

This study investigates the efficacy of using discarded textile (cotton and polycotton) and paper waste (newspaper and corrugated cardboard) as substrates to form sheets with optimum tensile strength. The effect of alkali treatment (sodium hydroxide (NaOH) and sodium bicarbonate (NaHCO3)), compressive loads (200 N and 500 N), and the use of binding agents (blackstrap molasses, sodium alginate, and cornstarch) were studied to optimize the tensile strength of homogeneous sheets. The alkali treatment using 5% NaOH for 5 h of soaking demonstrated the highest increase in tensile strength of 21% and 19% for cotton and newspaper, respectively. Increasing compressive load from 200 N to 500 N showed the highest increase in tensile strength of 37% and 42% for cotton and newspaper, respectively. Remarkably, among the binders, cornstarch at 20% concentration obtained an increase in tensile strength of 395%, 320%, 310%, and 185% for cotton, polycotton, corrugated cardboard, and newspaper sheets, respectively. The optimum results obtained from this study will be utilized to develop biodegradable seedling pots using discarded textile and paper waste.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1705 ◽  
Author(s):  
Yang Qin ◽  
Hui Zhang ◽  
Yangyong Dai ◽  
Hanxue Hou ◽  
Haizhou Dong

Alkali treatment is used for melt extrusion film formation with corn starch, but optimal conditions for this procedure are still unknown. In this study, the changes in properties and structure of high amylose corn starch (70%) films with different concentrations of sodium hydroxide (NaOH), prepared by melting extrusion, were investigated. With increasing sodium hydroxide concentrations, the tensile strength of the high-amylose starch film decreased gradually, while the elongation at break increased. The tensile strength of the high amylose starch (HAS) film with 2% NaOH-treatment was 10.03 MPa and its elongation at break was 40%. A 2% NaOH-treatment promoted the orderly rearrangement of starch molecules and formed an Eh-type crystal structure, which enlarged the spacing of the single helix structure, increased the molecular mobility of the starch, and slowed down the process of recrystallization; a 10% NaOH-treatment oxidized the hydroxyl groups of the high amylose corn starch during extrusion, formed a poly-carbonyl structure, and initiated the degradation and cross-linking of starch molecule chains.


Author(s):  
Jeanger P. Juanga-Labayen ◽  
Qiuyan Yuan

This study evaluates the efficacy of using textile waste blended with paper waste to form biodegradable seedling pots. A bio-composite blend of cotton (20% cotton, 40% newspaper, and 40% corrugated cardboard) and polycotton (20% polycotton, 40% newspaper, and 40% corrugated cardboard) with an optimum strength was formed into seedling pots. The appreciated seedling pots (untreated blends of cotton and polycotton) were compared with the commercial pots (cardboard seed starter pot and Jiffy pot) in terms of mechanical properties (tensile strength and compressive strength), biodegradability (soil burial test and anaerobic digestion), and seed germination. The untreated blends of cotton and polycotton pots demonstrated a comparable optimum strength, while the Jiffy pot and cardboard seed starter pot obtained the least tensile and compressive strengths, respectively. The anaerobic biodegradability assay suggests that the cotton blend pot, polycotton blend pot, and cardboard seed starter pot can degrade anaerobically because of high biogas and methane generation potential. A 100% seed germination was observed from the four seedling pots tested. Thus, the results demonstrate the efficacy of utilizing textile waste and paper waste to develop seedling pots with desirable strength and biodegradability compared to the commercial pots.


Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2019 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Harold J. Brandon ◽  
Larry S. Nichter ◽  
Dwight D. Back

The IDEAL IMPLANT® Structured Breast Implant is a dual lumen saline-filled implant with capsular contracture and deflation/rupture rates much lower than single-lumen silicone gel-filled implants. To better understand the implant’s mechanical properties and to provide a potential explanation for these eight-year clinical results, a novel approach to compressive load testing was employed. Multi-dimensional strains and tangent moduli, metrics describing the shape stability of the total implant, were derived from the experimental load and platen spacing data. The IDEAL IMPLANT was found to have projection, diametric, and areal strains that were generally less than silicone gel implants, and tangent moduli that were generally greater than silicone gel implants. Despite having a relatively inviscid saline fill, the IDEAL IMPLANT was found to be more shape stable compared to gel implants, which implies potentially less interaction with the capsule wall when the implant is subjected to compressive loads. Under compressive loads, the shape stability of a higher cross-link density, cohesive gel implant was unexpectedly found to be similar to or the same as a gel implant. In localized diametric compression testing, the IDEAL IMPLANT was found to have a palpability similar to a gel implant, but softer than a cohesive gel implant.


2018 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Cokorda putri Kusuma kencanawati ◽  
I Ketut Gede Sugita ◽  
NPG Suardana ◽  
I Wayan Budiasa Suyasa

Makalah ini menganalisis pengaruh perlakukan alkali dan tanpa perlakukan alkali terhadap karakateristik fisik, morfologi dan sifat mekanik serat kulit buah pinang (areca Catechu L.). Selama ini pemanfaatan limbah pertanian belum dilakukan secara maksimal, sehingga dapat menimbulkan pencemaran terhadap lingkungan. Serat kulit buah pinang (Areca Husk Fiber/AHF) selama ini hanya dipergunakan sebagai bahan bakar biomassa dan media tanam sedangkan untuk pemanfaatan lain belum ada sama sekali. AHF diberi perlakukan NaOH 2,5%, 5%, 7,5% dan 10% dengan waktu perendaman 2 jam pada temperatur kamar, untuk mengetahui karakteristik fisik AHF maka dilakukan pengukuran panjang dan diameter serat, pengujian densitas, pengujian kadar air dan moisture sedangkan untuk mengetahui karakteristik mekanik dilakukan pengujian tarik serat tunggal sesuai dengan ASTM D 3379. Dari penelitian ini diketahui bahwa diameter AHF mengalami pengurangan diameter akibat perlakukan alkali, hal ini terkait dengan hilangnya kandungan lignin, pektin dan wax. Densitas AHF menurun dengan meningkatan prosentase NaOH bila dibandingkan dengan AHF tanpa perlakukan NaOH. Kekuatan tarik bervariasi dengan adanya perlakuan alkali.  Kekuatan tarik AHF tertinggi pada serat yang mengalami perlakukan NaOH 5% yaitu sebesar 165 Mpa dan kekuatan tarik terendah pada AHF dengan perlakuan Alkali 10% yaitu sebesar 137 MPa . This paper analyzes the effect of alkali and non-alkali treatments on the physical characteristics, morphology and mechanical properties of betel nut huks fiber (areca Catechu L.). the used of agricultural waste has not been done optimally, causing environmental pollution. Areca Husk Fiber (AHF) only used as biomass fuel and planting medium, while for the other uses it has not existed. AHF was given 2.5%, 5%, 7.5% and 10% NaOH treatment with 2 hours immersion at room temperature, to known the physical characteristics of AHF then measured the length and diameter of fiber, density test, water content and moisture test. Mechanical characteristics of single fiber tensile testing in accordance with ASTM D 3379. From this study that known the diameter of AHF has a reduction in diameter due to alkaline treatment, this is related to loss of lignin, pectin and wax content. The density of AHF decreases with the percentage increase of NaOH when compared with AHF without the treatment of NaOH. Tensile strength varies with alkaline treatment. The highest AHF tensile strength in treated fibers was 5% NaOH of 165 Mpa and lowest tensile strength in AHF with 10% Alkali treatment of 137 MPa.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
M. L. Roemhildt ◽  
B. D. Beynnon ◽  
M. Gardner-Morse ◽  
K. Anderson ◽  
G. J. Badger

This study describes the first application of a varus loading device (VLD) to the rat hind limb to study the role of sustained altered compressive loading and its relationship to the initiation of degenerative changes to the tibio-femoral joint. The VLD applies decreased compressive load to the lateral compartment and increased compressive load to the medial compartment of the tibio-femoral joint in a controlled manner. Mature rats were randomized into one of three groups: unoperated control, 0% (sham), or 80% body weight (BW). Devices were attached to an animal’s leg to deliver altered loads of 0% and 80% BW to the experimental knee for 12 weeks. Compartment-specific material properties of the tibial cartilage and subchondral bone were determined using indentation tests. Articular cartilage, calcified cartilage, and subchondral bone thicknesses, articular cartilage cellularity, and degeneration score were determined histologically. Joint tissues were sensitive to 12 weeks of decreased compressive loading in the lateral compartment with articular cartilage thickness decreased in the peripheral region, subchondral bone thickness increased, and cellularity of the midline region decreased in the 80% BW group as compared to the 0% BW group. The medial compartment revealed trends for diminished cellularity and aggregate modulus with increased loading. The rat-VLD model provides a new system to evaluate altered quantified levels of chronic in vivo loading without disruption of the joint capsule while maintaining full use of the knee. These results reveal a greater sensitivity of tissue parameters to decreased loading versus increased loading of 80% BW for 12 weeks in the rat. This model will allow future mechanistic studies that focus on the initiation and progression of degenerative changes with increased exposure in both magnitude and time to altered compressive loads.


Geopolymer concrete plays a major role in concrete industry by replacing cement and using the industrial wastes. In this study, the cement is completely replaced by GGBS and strength properties are analyzed. An M30 mix design is prepared and the specimens are cast and tested. For this, sodium hydroxide and sodium silicate are used as activator and its ratio is fixed as 1:2.5. Sodium hydroxide of 12 molarity, 550kg/m3 of GGBS is used in the study. Admixture La Hypercrete S25 (HTS code 38244090) is added in the mix by 1% of weight of GGBS to obtain the required workability. For compression study, cubes in 100 mm size are cast. Cylinders with 100mm dia and 200mm height are tested for splitting tensile strength and beam specimens of 500mm long and 100mm cross sections were cast for determining the flexure behaviour. The beams are subjected to ambient curing and tested at 3, 7, 14, 28 and 56 days. The test result shows that there is a gradual increment in all the strengths from 3 to 56 days and it proves that geopolymer concrete with GGBS cured at ambient temperature performs well in the strength properties.


Sign in / Sign up

Export Citation Format

Share Document