scholarly journals Pengaruh Perlakukan Alkali terhadap Sifat Fisik, dan Mekanik Serat Kulit Buah Pinang

2018 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Cokorda putri Kusuma kencanawati ◽  
I Ketut Gede Sugita ◽  
NPG Suardana ◽  
I Wayan Budiasa Suyasa

Makalah ini menganalisis pengaruh perlakukan alkali dan tanpa perlakukan alkali terhadap karakateristik fisik, morfologi dan sifat mekanik serat kulit buah pinang (areca Catechu L.). Selama ini pemanfaatan limbah pertanian belum dilakukan secara maksimal, sehingga dapat menimbulkan pencemaran terhadap lingkungan. Serat kulit buah pinang (Areca Husk Fiber/AHF) selama ini hanya dipergunakan sebagai bahan bakar biomassa dan media tanam sedangkan untuk pemanfaatan lain belum ada sama sekali. AHF diberi perlakukan NaOH 2,5%, 5%, 7,5% dan 10% dengan waktu perendaman 2 jam pada temperatur kamar, untuk mengetahui karakteristik fisik AHF maka dilakukan pengukuran panjang dan diameter serat, pengujian densitas, pengujian kadar air dan moisture sedangkan untuk mengetahui karakteristik mekanik dilakukan pengujian tarik serat tunggal sesuai dengan ASTM D 3379. Dari penelitian ini diketahui bahwa diameter AHF mengalami pengurangan diameter akibat perlakukan alkali, hal ini terkait dengan hilangnya kandungan lignin, pektin dan wax. Densitas AHF menurun dengan meningkatan prosentase NaOH bila dibandingkan dengan AHF tanpa perlakukan NaOH. Kekuatan tarik bervariasi dengan adanya perlakuan alkali.  Kekuatan tarik AHF tertinggi pada serat yang mengalami perlakukan NaOH 5% yaitu sebesar 165 Mpa dan kekuatan tarik terendah pada AHF dengan perlakuan Alkali 10% yaitu sebesar 137 MPa . This paper analyzes the effect of alkali and non-alkali treatments on the physical characteristics, morphology and mechanical properties of betel nut huks fiber (areca Catechu L.). the used of agricultural waste has not been done optimally, causing environmental pollution. Areca Husk Fiber (AHF) only used as biomass fuel and planting medium, while for the other uses it has not existed. AHF was given 2.5%, 5%, 7.5% and 10% NaOH treatment with 2 hours immersion at room temperature, to known the physical characteristics of AHF then measured the length and diameter of fiber, density test, water content and moisture test. Mechanical characteristics of single fiber tensile testing in accordance with ASTM D 3379. From this study that known the diameter of AHF has a reduction in diameter due to alkaline treatment, this is related to loss of lignin, pectin and wax content. The density of AHF decreases with the percentage increase of NaOH when compared with AHF without the treatment of NaOH. Tensile strength varies with alkaline treatment. The highest AHF tensile strength in treated fibers was 5% NaOH of 165 Mpa and lowest tensile strength in AHF with 10% Alkali treatment of 137 MPa.

2015 ◽  
Vol 1123 ◽  
pp. 147-150 ◽  
Author(s):  
Harini Sosiati ◽  
Henny Pratiwi ◽  
Dwi Astuti Wijayanti ◽  
Soekrisno

Cellulose microfibrils were extracted from kenaf fiber by alkali treatments under various conditions to further characterize their properties and verify the factors which induce fiber degradation. Before treatment, the surface morphologies of the base, middle and tip of the raw fiber were observed. The tensile strength of untreated and treated fibers was measured with a universal tensile machine (UTM). Changes in surface morphologies of cellulose microfibrils were characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy was used to characterize the functional group related to cellulosic and non-cellulosic phases. Surface morphology of the middle of the fiber was denser and stronger than that of the periphery and therefore used to define an initial condition of fiber specimen. Alkali treatment in 6% NaOH at room temperature for 1 h increased the tensile strength of the microfibril; 9% NaOH at 100°C for 2 h results in a marked decrease. Damage to the fiber surface and loss of crystallinity were associated with decreased tensile strength.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Yee Tan ◽  
Hoo Tien Nicholas Kuan ◽  
Meng Chuen Lee

Effect of alkali treatment on ground coffee waste/oxobiodegradable HDPE (GCW/oxo-HDPE) composites was evaluated using 5%, 10%, 15%, and 20% volume fraction of GCW. The composites were characterized using structural (Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM)), thermal (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), mechanical (tensile and impact test) properties, and water absorption. FTIR spectrum indicated the eradication of lipids, hemicellulose, lignin, and impurities after the treatments lead to an improvement of the filler/matrix interface adhesion. This is confirmed by SEM results. Degree of crystallinity index was increased by 5% after the treatment. Thermal stability for both untreated and treated GCW composites was alike. Optimum tensile result was achieved when using 10% volume fraction with enhancement of 25% for tensile strength and 24% for tensile modulus compared to untreated composite. Specific tensile strength and modulus had improved as the composite has lower density. The highest impact properties were achieved when using 15% volume fraction that lead to an improvement of 6%. Treated GCW composites show better water resistance with 57% improvement compared to the untreated ones. This lightweight and ecofriendly biocomposite has the potential in packaging, internal automotive parts, lightweight furniture, and other composite engineering applications.


2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Nur Aina Farhana Mat Nasir ◽  
Jamarosliza Jamaluddin ◽  
Zuraidah Zainudin ◽  
Mahirah Muhammad Busheri ◽  
Nadia Adrus ◽  
...  

The main purpose of this paper is to investigate the effect of alkaline treatment on the physical, thermal, mechanical and chemical properties of pristine lemba leaves fibres (LeLeFs). LeLeFs were treated with 6, 8, and 10 wt% sodium hydroxide (NaOH) solution at room temperature for 24 h. In order to determine the functional group presence after the alkaline treatment, LeLeFs were analyzed using Fourier Transform Infrared (FTIR) Spectroscopy. The density of LeLeFs treated with 10 wt% NaOH solution recorded the highest density with 1.168 g/cm³. Morphology study showed that the diameter of fibre reduced with the increment of NaOH concentration. The removal of lignin and hemicellulose could be observed in the thermogravimetric analysis (TGA). Alkaline treatment enhanced the tensile properties of fibre and 10 wt% alkaline treated fibre resulted in the highest tensile strength, modulus and elongation of the fibre at 511.10 MPa, 11.76 GPa and 3.69% respectively. Chemical resistance analysis found that the treated fibre had better chemical resistance compared to untreated fibre. Therefore, it is substantiated that alkaline treatment affects the properties of LeLeF.


2012 ◽  
Vol 626 ◽  
pp. 449-453 ◽  
Author(s):  
Razaina Mat Taib ◽  
Nurul Mujahidah Ahmad Khairuddin ◽  
Zainal Arifin Mohd Ishak

Composites of polypropylene (PP) and kenaf fiber (KF) were immersed in water at room temperature. The fiber was treated with alkaline solution. A compatibilizer, maleic anhydride-grafted polypropylene (MAPP) was added in some composite formulations. Composite with alkali treated fibers (KFA) showed similar tensile strength but lower tensile modulus than the composite with untreated fiber, KF. Addition of MAPP was crucial to improve the tensile properties and water resistance of either PP/KF or PP/KFA composites. Alkali treatment adversely affected the water absorption behavior of PP/KF composite.


2013 ◽  
Vol 701 ◽  
pp. 239-242
Author(s):  
L. Yusriah ◽  
S.M. Sapuan ◽  
E.S. Zainudin ◽  
Jaafar Mustapha Mariatti

The tensile properties of untreated and alkali treated betel nut husk fiber were investigated using single fiber tensile test method and the fiber structures were observed using SEM technique. The alkali treatment aids in the removal of lignin, hemicellullose and non-cellulosic components such as wax and pectin on the betel nut husk fiber surface, which yields bigger lumen size and rougher betel nut husk fiber surface. The alkali treatment enhanced the elongation at break of betel nut husk fiber but at the expense of tensile strength and Young's modulus.


2019 ◽  
Vol 35 (2) ◽  
pp. 605-610
Author(s):  
Raghu Patel G. Ranganagowda ◽  
Sakshi Shantharam Kamath ◽  
Ravi Kumar Chandrappa ◽  
Basavaraju Bennehalli

In the present study, fibers extracted from empty areca fruit were surface modified by giving chemical treatment with 2% NaOH solutionat laboratory temperature to investigate the effect of alkali treatment onphysical, mechanical, and morphological properties of arecafiber. Tensile strength and Young’s modulus of areca fiber found to decrease with alkali treatment. But improvement in elongation at break of the fiber was observed for alkali treated fiber due to elimination of lignin and hemicelluloses from the fiber surface upon alkali treatment. The results proved that the natural areca fiber is a potential alternative source for strengthening the polymer composite industries.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


Sign in / Sign up

Export Citation Format

Share Document