scholarly journals Risk Assessment and Deployment for Safety Showers and Eyewash Stations in the Process Plant Industry

Author(s):  
Jae-Young Choi ◽  
Sang-Hoon Byeon

Safety showers and eyewash stations are equipment used for primary washing if their operator is exposed to hazardous chemicals. Therefore, safety showers and eyewash stations should be installed to ensure operator safety in process plants with excessive hazardous chemicals. International guidelines related to safety showers and eyewash stations are introduced in ANSI Z358.1, BS EN 15154, and German DIN 12899-3:2009, but only mechanical specifications regarding safety showers and eyewash stations are suggested. As such, there are currently no engineering guidelines, books, or technical journal papers requiring safety showers or eyewash stations and their efficient deployment. Thus, this study conducted risk assessment from an industrial hygiene perspective, suggesting which process equipment requires a safety shower and eyewash, including their economical and efficient deployment for operator safety. In industry, safety showers and eyewash stations are considered part of the process safety field; this study attempted to contribute to the safety improvement of operators by applying risk assessment of the industrial hygiene field. More studies are needed that contribute to operators’ safety by incorporating industrial hygiene fields for other process safety fields, including safety showers and eyewash stations.

2020 ◽  
Vol 12 (15) ◽  
pp. 6152 ◽  
Author(s):  
Hans Pasman ◽  
Kedar Kottawar ◽  
Prerna Jain

Resilience is the ability to restore performance after sustaining serious damage by a usually unexpected threat. This paper analyzes resilience of process plants as there are oil and gas refining, chemical manufacturing, power-producing plants, and many more. Over the years, plant safety has shifted from retrospective to proactive measures. Safety is important from many points of view, such as protection of workforce and nearby population, but certainly too from an economical and sustainability aspect. Pro-action requires predictive insight of what in the process can go wrong because of internal or external disruptive disturbance. Over the years, to that end, much effort was spent developing risk assessment methods and management. However, risk assessment has proven to be fallible because of various uncertainties and not the least by overlooked or unknown threats. To protect against those upsetting threats, measures can be taken up to a certain limit. These start in designing error-tolerant equipment able to be receptive to early warning signals during operations, responding to those with ‘plasticity’ of mind (that is, an organization and its leadership especially able to think ‘outside-the box’ for coping with unexpected situations), and finally, to deploy effective emergency response and able to recover from damage quickly. The paper presents a summary/review of nearly a decade of research work at the Mary Kay O’Connor Process Safety Center at the Texas A&M University to develop the concept and the techniques to realize a resilient plant, so far with a focus on chemical plant. It is, however, still a ‘work-in-progress’; potential is large. Besides the conceptual details, cases are presented that show how human and technical factors, combined in a socio-technical system, can lead to a broader plant safety insight enabling more effective risk control and increased resilience. These cases have up to now only considered warning signals and possible management action, while still limited to internal threats. Hence, aspects of equipment design and recovery should be further considered, also in the light of the dynamics of present-day business environment.


2020 ◽  
Author(s):  
Giuseppe Abbiati ◽  
Marco Broccardo ◽  
Rocco di Filippo ◽  
Bozidar Stojadinovic ◽  
Oreste S. Bursi

The catastrophic consequences of recent NaTech events triggered by earthquakes highlighted the inadequacy of standard approaches to seismic risk assessment of chemical process plants. To date, the risk assessment of such facilities mainly relies on historical data and focuses on uncoupled process components. As a consequence, the dynamic interaction between process equipment is neglected. In response to this gap, researchers started a progressive integration of the Pacific Earthquake Engineering Research Center (PEER) Performance-Based Earthquake Engineering (PBEE) risk assessment framework. However, a few limitations still prevent a systematic implementation of this framework to chemical process plants. The most significant are: i) the computational cost of system-level simulations accounting for coupling between process equipment; ii) the experimental cost for component-level model validation; iii) a reduced number of hazard-consistent site-specific ground motion records for time history analyses.In response to these challenges, this paper proposes a recently developed uncertainty quantification-based framework to perform seismic fragility assessments of chemical process plants. The framework employs three key elements: i) a stochastic ground-motion model to supplement scarcity of real records; ii) surrogate modeling to reduce the computational cost of system-level simulations; iii) a component-level model validation based on cost-effective hybrid simulation tests. In order to demonstrate the potential of the framework, two fragility functions are computed for a pipe elbow of a coupled tank-piping system.


Author(s):  
Silvia Alessandri ◽  
Antonio C. Caputo ◽  
Daniele Corritore ◽  
Giannini Renato ◽  
Fabrizio Paolacci ◽  
...  

Quantitative Risk Assessment (QRA) is a classical method for the calculation of risk in process plants, which is based on the logic of the consequence analysis. This intrinsically probabilistic method has been thought for classical accident conditions, where the damage events and the relevant consequences start from a preselected component and a standard loss of containment (LOC) and follow all possible scenarios for the calculation of individual and societal risk. This final risk metric is usually expressed in terms of probability of fatality in a specific location of the surrounding area or a certain number of fatalities in the area surrounding the accident. In presence of Na-Tech events, like earthquakes, a multi-source condition can be caused by multi-damage conditions simultaneously involving more than one equipment, which in turn can generate a multiple-chain of events and consequences. In literature, several attempts of modifying the classic QRA approach to account for this important aspect have been formalized without converging toward a unified approach. In this paper, a fragility-based method for Quantitative Seismic Risk Analysis (QSRA) of a process plant is investigated. This method takes into account all possible damage/losses of containment conditions in the most critical equipment, e.g., storage tanks. Fragility curves, which are analytically evaluated for each unit with respect to its seismic damage conditions, are utilized inside the procedure. The Monte Carlo Simulation (MCS) method is then used with the aim to follow all steps of QSRA. In particular, starting from the seismic hazard curve of the site where the plant is placed, a multi-level approach is proposed. In this approach, the first level is represented by the components seismically damaged, whereas the following levels are treated through a classical consequence analysis, including the propagation of multiple simultaneous and interacting chains of accidents. These latter are applied by defining proper correspondences for all relevant equipment between structural damage (i.e., limit states) and LOC events. The application of the method to an actual process plant permits to investigate its high potentiality and the dependency of the risk assessment from the proper fragility models.


2020 ◽  
Vol 5 (1) ◽  
pp. 25-32
Author(s):  
Riad BENDIB ◽  
Elarkam MECHHOUD ◽  
Hanane BENDJAMA ◽  
Halima BOULKSIBAT

Process plant and chemical processes are complex and large systems, consisting of thousands of devices interacting with each other [76][45]. The structure of this type of industrial plants lead to difficulties in process control, hence deviations from the operation objectives or desired states. These deviations creates abnormal situations that drive products out of specification, increased operational costs, shut downs and even worse they can cause accidents, which may lead to damages of equipment, environment and affect the health. identifying hazards is fundamental for ensuring the safe design and operation in process plants. Based on the idea of learning from accidents, several techniques and standards are available to identify hazardous situations and help companies to build up strategies to avoid the hazards. In this s work we present a study based on two methods BOWTIE and HAZOP methods applied for an LPG a plant for gas separation located in SKIKDA refinery which is considered as the most important refinery in Algeria where the treatment capacity reaches more than 15 millions tones per year of crude oil. Several recommendations raised from our study to improve the safety of the plant particularly since it is considered as an old plant start working since 1980. The study is completed by simulating the deduced dangerous scenarios using ALOHA software.


2020 ◽  
Vol 26 (8) ◽  
pp. 819-835
Author(s):  
Antonio José Carpio ◽  
María de las Nieves González ◽  
Inmaculada Martínez ◽  
María Isabel Prieto

The techniques for preventing risk have traditionally been analyzed on an individual basis, it being highly complex to apply preventive procedures across the board in construction works. This implies the necessary risk assessment based on the common factors of Safety at Work, Industrial Hygiene, Ergonomics and Psychosociology. This work analyzes and classifies the environments which characterize the building process: absolute (initial), documentary, construction, social and life cycle, and identifies the technical-documentary processes associated with each one. Finally, a new risk assessment method adapted to building works is proposed, called “Level of Preventive Action”, by means of a new mathematical formula which encompasses Safety at Work, Industrial Hygiene, Ergonomic and Psychosociological factors. It is based upon the development of the William T. Fine method, adapting it to construction works, with the incorporation of six parameters to explain the degree of correction. It consolidates and connects environment parameters to determine the preventive action level of the construction work, with the objective of establishing the levels of preventive control required to achieve an optimum prevention situation. The results of comparison between the environments in the implementation of the new risk assessment methodology during the construction process in a real building work are shown.


2015 ◽  
Author(s):  
Karina F. Souza ◽  
Olivier Benyessaad

Nowadays there is a greater demand in the Oil & Gas Industry for production efficiency and sustainability while it is necessary to ensure the process safety and quality. As a guideline, this paper will start describing the existent hazards in a typical offshore unit, focusing mainly the personnel safety. Then it will detail the differences among the studies which can be performed in order to identify and assess such hazards and consequently to perform a complete Risk Assessment, which is the key step for a successful Risk Management. Additionally, it will be demonstrated the reasons why a Risk Management is necessary to ensure safety in an Oil & Gas installation in the most optimized manner.


2020 ◽  
Vol 10 (19) ◽  
pp. 6959
Author(s):  
Seppo Sierla ◽  
Lotta Sorsamäki ◽  
Mohammad Azangoo ◽  
Antti Villberg ◽  
Eemeli Hytönen ◽  
...  

Researchers have proposed various models for assessing design alternatives for process plant retrofits. Due to the considerable engineering effort involved, no such models exist for the great majority of brownfield process plants, which have been in operation for years or decades. This article proposes a semi-automatic methodology for generating a digital twin of a brownfield plant. The methodology consists of: (1) extracting information from piping and instrumentation diagrams, (2) converting the information to a graph format, (3) applying graph algorithms to preprocess the graph, (4) generating a simulation model from the graph, (5) performing manual expert editing of the generated model, (6) configuring the calculations done by simulation model elements and (7) parameterizing the simulation model according to recent process measurements in order to obtain a digital twin. Since previous work exists for steps (1–2), this article focuses on defining the methodology for (3–5) and demonstrating it on a laboratory process. A discussion is provided for (6–7). The result of the case study was that only few manual edits needed to be made to the automatically generated simulation model. The paper is concluded with an assessment of open issues and topics of further research for this 7-step methodology.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 565 ◽  
Author(s):  
Sarita Greyling ◽  
Henri Marais ◽  
George van Schoor ◽  
Kenneth Richard Uren

Fault detection and isolation (FDI) within the petrochemical industries (PCIs) is largely dominated by statistical techniques. Although a signal-based technique centered on exergy flows within a process plant was proposed, it has only been applied to single process units. The exergy-based scheme has not yet been applied to process plants that feature at least a single recycle stream. The Tennessee Eastman process (TEP) is commonly used as an FDI benchmark process, but due to obfuscation, the TEP cannot be directly implemented in a commercial process simulator. Thus, application of FDI techniques to proprietary processes will require significant investment into the implementation of the FDI scheme. This is a key impediment to the wide-spread comparison of various FDI techniques to non-benchmark processes. In this paper, a gas-to-liquids (GTL) process model is developed in Aspen HYSYS®, and the model’s performance is validated. The exergy-based FDI technique is applied to the GTL process while the process is subjected to carefully selected faults. The selected faults aim to affect several process units, and specifically, the resultant recycle stream of the GTL process is considered. The results indicate that even though the exergy-based technique makes use of fixed thresholds, complete detection and isolation can be achieved for a list of common process faults. This is significant since it shows, for the first time, that the exergy-based FDI scheme can successfully be deployed in processes with recycle streams.


Sign in / Sign up

Export Citation Format

Share Document