scholarly journals Insecticidal Efficacy of Microbial-Mediated Synthesized Copper Nano-Pesticide against Insect Pests and Non-Target Organisms

Author(s):  
Perumal Vivekanandhan ◽  
Kannan Swathy ◽  
Adelina Thomas ◽  
Eliningaya J. Kweka ◽  
Afroja Rahman ◽  
...  

Currently, medical and stored grain pests are major concerns of public health and economies worldwide. The synthetic pesticides cause several side effects to human and non-target organisms. Copper nanoparticles (CuNPs) were synthesized from an aqueous extract of Metarhizium robertsii and screened for insecticidal activity against Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, Tenebrio molitor and other non-target organisms such as Artemia salina, Artemia nauplii, Eudrilus eugeniae and Eudrilus andrei. The synthesized copper nano-particles were characterized using, UV-vis spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy Dispersive X-Ray analysis (EDaX), High Resolution Scanning Electron Microscope (HR-SEM) and Atomic Force Microscope (AFM) analysis. Insects were exposed to 25 μg/mL concentration produced significant mortality against larvae of A. stephensi, A. aegypti, C. quinquefasciatus and T. molitor. The lower toxicity was observed on non-target organisms. Results showed that, M. robertsii mediated synthesized CuNPs is highly toxic to targeted pests while they had lower toxicity were observed on non-target organisms.

2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Jianhui Wu ◽  
Cailian Du ◽  
Jieming Zhang ◽  
Bo Yang ◽  
Andrew G. S. Cuthbertson ◽  
...  

Nanotechnology is increasingly being used in areas of pesticide production and pest management. This study reports the isolation and virulence of a new Metarhizium anisopliae isolate SM036, along with the synthesis and characterization of M. anisopliae–chitosan nanoparticles followed by studies on the efficacy of nanoparticles against Plutella xylostella. The newly identified strain proved pathogenic to P. xylostella under laboratory conditions. The characterization of M. anisopliae–chitosan nanoparticles through different analytical techniques showed the successful synthesis of nanoparticles. SEM and HRTEM images confirmed the synthesis of spherical-shaped nanoparticles; X-ray diffractogram showed strong peaks between 2θ values of 16–30°; and atomic force microscopy (AFM) analysis revealed a particle size of 75.83 nm for M. anisopliae–chitosan nanoparticles, respectively. The bioassay studies demonstrated that different concentrations of M. anisopliae–chitosan nanoparticles were highly effective against second instar P. xylostella under laboratory and semi-field conditions. These findings suggest that M. anisopliae–chitosan nanoparticles can potentially be used in biorational P. xylostella management programs.


2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


Clay Minerals ◽  
2009 ◽  
Vol 44 (4) ◽  
pp. 455-468 ◽  
Author(s):  
P. Somelar ◽  
K. Kirsimäe ◽  
J. Środoń

AbstractThe composition and particle morphology of diagenetic mixed-layer illite-smectite (I-S) in the shallow buried Ordovician Kinnekulle K-bentonite were studied to understand the process of illitization in the Baltic Basin. The same K-bentonite bed from 12 different locations in the Basin was sampled and analysed by means of X-ray diffraction (XRD), atomic-force microscopy (AFM) and K-Ar dating. Illite-smectite in the samples was identified as a highly illitic R1 type illite-smectite vermiculite (high-charge smectite) mixed-layer mineral with 63–78% illitic layers. Illite-smectite was characterized by log-normally distributed thin particles with an area-weighted mean thickness varying from 1.9 to 3.6 nm and 2.1 to 3.8 nm by XRD-PVP and AFM analysis, respectively. The K-Ar diagenetic ages of the mixed-layer minerals suggest an illitization age of 370 to 420 Ma that agrees with the latest phase of the Caledonian orogeny. Illitization of the Kinnekulle bentonite was probably driven by the intrusion of K-rich fluids.


2020 ◽  
Vol 10 (01) ◽  
pp. 119-126
Author(s):  
Noor M. Mohammed ◽  
Farah AH. Kadhim ◽  
Aseel A. Hammood ◽  
Ashour H. Dawood

The double-layered hydroxide nano-particles compounds with ciprofloxacin drug were carried out by preparation of the double layered hydroxide (DLH) of M+3/M+2 ions for selective ions. The ciprofloxacin drug was inserted between them. The resulted compounds were characterized by X-Ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier Transform Infrared (FT-IR) spectroscopy; the antibacterial studied done by using the gram (+) and gram (-) pigments.


2008 ◽  
Vol 1129 ◽  
Author(s):  
S Ganti ◽  
Y Dhopade ◽  
R K Gupta ◽  
K Ghosh ◽  
P K Kahol

AbstractThin films based on nano-composites have attracted considerable attention for their possible applications in devices and sensors. These nano-composite thin films are formed by embedding metal or semiconductor nano-particles in a host material and they exhibit interesting electrical transport properties. Using pulsed laser deposition technique, we have prepared nano-composite thin films of gold-strontium titanate on quartz substrate. Gold and strontium titanate were used as targets for pulsed laser deposition. Thin films having different compositions were grown. The effect of different composition on their electrical and optical properties has been studied in details. The structural characterizations of the films were done by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Transmission electron microscopy as well as atomic force microscopy shows the presence of gold nano-particles in these films. X-ray diffraction and energy dispersive x-ray spectroscopy shows the existence of strontium titanate and gold. Current-voltage characteristics and temperature dependent resistivity measurements were made to characterize electrical properties of these films. Electrical properties can be manipulated from metal to insulator through semiconductor by varying the composition. In addition, it is observed that the absorption of visible light increases with increase in gold percentage. This indicates that these nano-composites could also use as active materials for many electronic as well as optical sensors.


2009 ◽  
Vol 2009 ◽  
pp. 1-3 ◽  
Author(s):  
Nesa Esmaeilian Tari ◽  
Mohammad Mahdi Kashani Motlagh

Nanorods hydroxyapatite, (HAP) is successfully prepared by water in oil microemulsion using, and (water phase), poly(sodium 4-styrene sulfonate) (PSSS) as template and cyclohexane as oil phase. The nano-structure of the product was studied by means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR), scanning electron microscopy (SEM), and atomic force microscope (AFM). With this system, we could synthesize nano-particles of hydroxyapatite with high crystallinity and least agglomeration.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Olivea Abd Al-Azim Elhefnawy ◽  
Amira Abd ElFattah Elabd

Abstract AlBaNi-LDH nanoparticles have been synthesized by the co-precipitation method. A series of characterization analyses (Scanning Electron Microscope, Energy Dispersive X-ray, Transmission Electron Microscope, X-ray Diffraction, Atomic Force Microscope, and Infrared spectroscopy) proved that the surface structure of AlBaNi-LDH nano-particles was the key mechanism for UO2 2+ adsorption. The synthesized product showed good performance in UO2 2+ adsorption efficiency in neutral pH with a maximal adsorption capacity of 137 mg/g. The results demonstrated the adsorption process fitted well with pseudo-second-order and Langmuir isotherm models. Also, the effects of coexisting ions and different eluents are briefly described. These results confirm that AlBaNi-LDH is an effective material for the adsorption of UO2 2+ from an aqueous solution with reusable availability.


2008 ◽  
Vol 600-603 ◽  
pp. 211-214 ◽  
Author(s):  
Andrea Severino ◽  
Christopher L. Frewin ◽  
Ruggero Anzalone ◽  
Corrado Bongiorno ◽  
Patrick Fiorenza ◽  
...  

In this work a comparison between atmospheric pressure (AP) and low pressure (LP) carbonization as the first step in the growth process of 3C-SiC on Si substrates is presented. Three different Si substrate orientations have been studied and compared. Characterization analysis has been performed by Atomic Force Microscopy (AFM), X-ray Diffraction Spectroscopy (XRD) and Transmission Electron Microscopy (TEM). XRD and AFM analysis show a lower roughness and a better quality for LPCVD carbonized samples. Substrate orientation plays an important role both in the generation as well as in the effect of such defects in the subsequent growth process, leading to a rougher SiC surface for growth on (110) Si while micro-twin effects are limited for growth on (111) Si, resulting in an extremely flat film.


2019 ◽  
Vol 19 (4) ◽  
pp. 936 ◽  
Author(s):  
Faten Hadi Fakhri ◽  
Luma Majeed Ahmed

The aim of this manuscript was to modify the ZnS surface by incorporating with CdS photocatalyst. This manner led to depressing the recombination process and increasing the activity. The X-ray Powder Diffraction (XRD) data were proved that the CdS incorporated with ZnS and formed ZnS-CdS nanocomposite by observing new peaks at 26.92, 28.62, 30.52, and 47.26°. Based on the Atomic Force Microscopy (AFM) analysis and Tauc equation, the particle sizes for all samples were raised with decreased the band gap values. The activation energy for decolorization of Congo red with the using ZnS is found to be more than that value for the using prepared ZnS-CdS composite. The percentage of efficiency was found to be increased with modified the ZnS surface.


2015 ◽  
Vol 22 (02) ◽  
pp. 1550020 ◽  
Author(s):  
KHALIQ MAHMOOD ◽  
SHAZIA BASHIR ◽  
MAHREEN AKRAM ◽  
ASMA HAYAT ◽  
FAIZAN-Ul-HAQ ◽  
...  

Pulse laser deposited thin films of TiN are irradiated by 1 MeV carbon (C+) ions beam for various doses ranging 0.4 to 2.8 × 1014 ions/cm2. Atomic force microscopy (AFM) analysis reveals the formation of hillocks like structures after ion irradiation. X-ray diffraction (XRD) investigations show that the film crystallinity increases for lower doses ranging from 0.4 to 1.2 × 1014 ions/cm2 and decreases for higher doses (2 to 2.8 × 1014 ions/cm2) of ions. No new bands are identified from Raman spectroscopy. However, a noticeable change in microhardness has been observed. The hillock densities as well as hardness are strongly dependent upon ion dose.


Sign in / Sign up

Export Citation Format

Share Document