scholarly journals Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer

Author(s):  
Peng Cheng ◽  
Houtian Tang ◽  
Yue Dong ◽  
Ke Liu ◽  
Ping Jiang ◽  
...  

Many scholars have conducted in-depth research on the theme of land use change and food security, and formed fruitful research results, but there is a lack of quantitative analysis and comprehensive evaluation of research achievements. Therefore, based on the relevant literature on the theme of land use change and food security in the core collection of the Web of Science (WOS) database, this paper takes the advantage of CiteSpace and VOSviewer bibliometric software to draw the cooperative network and keyword cooccurrence map to analyze the research progress and frontier. The results reveal that: (1) The research started in 1999 and can be divided into three stages: initial research, rapid development, and a stable in-depth stage. This topic has increasingly become a research hotspot in the academic community. (2) The distribution of research institutions is concentrated and forms a small cluster, and the research networks between developed and developing countries have been established, and developed countries are in the core position, but the cooperation network is not prominent. (3) The research content is becoming increasingly organized and systematic, and the research hot topics are divided into seven aspects. (4) The research area of the subject covers multiple levels, such as global, national, and specific natural geographical regions, and has formed a research system of geographic information technology and satellite remote sensing technology. It also presents the trend of cross integration with economics, land management and soil science. In the future, theoretical innovation still needs to be strengthened, and we should strengthen the research on the impact of agricultural chemical fertilizers on food security and study the impact of urban expansion on land use change.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Intan Hapsari Surya Putri ◽  
Imam Buchori ◽  
Wiwandari Handayani

Purpose This study aims to prove that land-use change plays a role in the occurrence of hydro-meteorological disasters in Central Java, especially in relation to its upstream and downstream. Design/methodology/approach The paper presents empirical findings from quantitative research using a spatial analysis and descriptive analysis. Findings The upstream and downstream area of Central Java is categorized as a rapid development area that results in changes in land use and land cover. The findings showed that there was an increasing number of hydrometeorological disasters such as floods and landslides as the impact of land-use change and rainfall conditions. Research limitations/implications Analysis of the relationship between rainfall and disaster events with more technical and specific analysis could be done in the further research. Originality/value In this study, more analysis in the context of river basin systems including upstream and downstream in different periods to examine the linkage between them have been considered and incorporated.


2021 ◽  
Author(s):  
Youcai Kang ◽  
Jianen Gao ◽  
Hui Shao ◽  
Yuanyuan Zhang

<p><strong>Abstract: </strong>Climate and land-use change are the two main driving forces that affect watershed hydrological processes. Separately assessing the impacts of climate and land use change on hydrology is important for water resource management. In this research, the SWAT (Soil and Water Assessment Tool) and statistical methods were employed to evaluate the effects of climate and land-use change on surface hydrology in the hilly-gully region of the Loess Plateau. The results showed that both the temperature and potential evapotranspiration (PET) had significant upward trends (p < 0.05), while the precipitation presented a slightly downward trend in the Yanhe watershed during 1982-2012. The contribution of precipitation to streamflow is concentrated in the flooding periods (from July to September), the average contribution rate of surface runoff on stream flow accounted for 55%, of which the flooding period accounted for 40%. With the 2.17% of slope farmland transformed to the forest and grassland, the average runoff coefficient decreased from 0.36 to 0.15 during 1982-2012. The impact of land use change on soil water content is mainly happened in the upstream stream, while the dominated factor converted to climate from northwest to southeast in the Yanhe watershed. The Evapotranspiration was more sensitive to land-use change than climate variability in all sub-basins, and increased by 209% with vegetation restoration in the Yanhe watershed. Therefore, the impacts of climate variation and land use change on surface hydrological processes were heterogeneity in different geographical regions, climate is the main factor to influence the runoff, while the land use is the dominated factor to evapotranspiration. The quantitative assessment the influence of climate variability and land-use change on hydrology can provide insight into the extent of land use/cover change on regional water balance, and develop appropriate watershed management strategies on the Loess Plateau.</p><p><strong>Keywords: </strong>climate shift, human activities, hydrological processes, SWAT, the Loess Plateau</p><p><strong>Funding:</strong> This study was funded by the National Natural Science Foundation of China (No. 41877078, 41371276), Key research and development project of Shaanxi Province (2020ZDLSF06-03-01), National Key Research and Development Program of China (No. 2017YFC0504703) and Knowledge Innovation Program of the Chinese Academy of Sciences (No. A315021615).</p><p> </p>


2006 ◽  
Vol 2 (1) ◽  
Author(s):  
Shaharudin Idrus ◽  
Abdul Hadi Samad

The paper discusses over four decades of urban land use changes in the Langat River Basin in response to rapid development impulses that flowed from the more developed Klang Valley where Kuala Lumpur, the Malaysian capital city is situated. It proceeds to look into the impact of those changes on the ecosystem health of the basin. Federal development policies, strategies, programs and activities have transformed the basin from an industrial agricultural basin into an urbanized area. Being contiguous to the Klang Valley, the basin rose over the decades to be a choice location for not only foreign direct investment to produce manufactured products for export but also services and educational. The paper also discusses the status of the Langat Basin ecosystem health. The change to the land use has indeed impacted on the basin ecosystem health. Using GIS, land use changes in the basin over the decades were analysed to reveal the persistent direction of change. It is clear that the trend of land use change in the Langat Basin is the conversion from one type of land use to developing urbanised and full urban areas. What is implied by the changes are indicators that can be derived to show the sustainability of the ecosystem in the Langat Basin such as river flood, mud flood, land slide, etc.


2006 ◽  
Vol 2 ◽  
Author(s):  
Shaharudin Idrus ◽  
Abdul Hadi Samad

The paper discusses over four decades of urban land use changes in the Langat River Basin in response to rapid development impulses that flowed from the more developed Klang Valley where Kuala Lumpur, the Malaysian capital city is situated. It proceeds to look into the impact of those changes on the ecosystem health of the basin. Federal development policies, strategies, programs and activities have transformed the basin from an industrial agricultural basin into an urbanized area. Being contiguous to the Klang Valley, the basin rose over the decades to be a choice location for not only foreign direct investment to produce manufactured products for export but also services and educational. The paper also discusses the status of the Langat Basin ecosystem health. The change to the land use has indeed impacted on the basin ecosystem health. Using GIS, land use changes in the basin over the decades were analysed to reveal the persistent direction of change. It is clear that the trend of land use change in the Langat Basin is the conversion from one type of land use to developing urbanised and full urban areas. What is implied by the changes are indicators that can be derived to show the sustainability of the ecosystem in the Langat Basin such as river flood, mud flood, land slide, etc.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Sign in / Sign up

Export Citation Format

Share Document