scholarly journals Real-Time Visualization of Geo-Sensor Data Based on the Protocol-Coupling Symbol Construction Method

2018 ◽  
Vol 7 (12) ◽  
pp. 460 ◽  
Author(s):  
Donglai Jiao ◽  
Jintao Sun

Obtaining and visualizing the internal state and position information of the remote device using sensors are important aspects of industrial manufacturing. For large-scale geo-sensors that have been recently used, map-based management and visualization of the geo-sensor devices have become ubiquitous. Users often build multiple map symbols to represent the multiple states of a device based on traditional map symbols. Visualizing multiple geo-sensor data in real time with one map symbol is difficult. In this paper, a protocol-coupling map symbol and a construction method for real-time data visualization is introduced where different sensor states of the geo-sensor are expressed with one symbol. The sensor data visualization method in supervisory control and data acquisition systems (SCADA) was introduced and applied to the construction and visualization process of map symbols. First, based on the traditional vector map symbols and the communication protocol parsing interface, the mapping relationship between the sensor data item and the graphic element is defined in the map symbol construction process. Second, by referring to the streaming services method in ArcGIS GeoEvent, geo-sensor data acquisition and a transfer broker in a GIS server is built, through which the real-time sensor data can be transferred from the remote side to the map client and used for map symbol rendering. Finally, the new map symbols are used for real-time geo-sensor data visualization in applications. In the application of the real-time monitoring of geo-sensor devices, remote device information was acquired by sensor and transmitted to the broker then cached on the server side. If the cached sensor data has changed compared to the previous, the changed data will be pushed to map client by broker. The communication module in the map client that communicates with the broker receives changed geo-sensor data and triggers a refresh of the map. Then the protocol-coupling map symbol is rendered according to the mapping profile and the status of the geo-sensor device will be displayed on the map in real time. All the methods and processes were verified in client-server and browser-server GIS architecture.

J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


2012 ◽  
Vol 6-7 ◽  
pp. 783-789
Author(s):  
Jian Feng Dong ◽  
Tian Yang Dong ◽  
Jia Jie Yao ◽  
Ling Zhang

With the rapid development of smart-phone applications, how to make the ordering process via smart-phones more convenient and intelligent has become a hotspot. This paper puts forward a method of restaurant dish recommendation relying on position information and association rules. In addition, this paper has designed and developed a restaurant recommendation system based on mobile phone. The system would fetch the real-time location information via smart-phones, and provide customers personalized restaurant and dish recommendation service. According to the related applications, this system can successfully recommend the related restaurants and food information to customers.


2017 ◽  
Vol 8 (2) ◽  
pp. 88-105 ◽  
Author(s):  
Gunasekaran Manogaran ◽  
Daphne Lopez

Ambient intelligence is an emerging platform that provides advances in sensors and sensor networks, pervasive computing, and artificial intelligence to capture the real time climate data. This result continuously generates several exabytes of unstructured sensor data and so it is often called big climate data. Nowadays, researchers are trying to use big climate data to monitor and predict the climate change and possible diseases. Traditional data processing techniques and tools are not capable of handling such huge amount of climate data. Hence, there is a need to develop advanced big data architecture for processing the real time climate data. The purpose of this paper is to propose a big data based surveillance system that analyzes spatial climate big data and performs continuous monitoring of correlation between climate change and Dengue. Proposed disease surveillance system has been implemented with the help of Apache Hadoop MapReduce and its supporting tools.


2018 ◽  
Vol 14 (01) ◽  
pp. 66
Author(s):  
Gan Bo ◽  
Jin Shan

In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Chun Shan ◽  
Jilong Bian ◽  
Xianfei Yang ◽  
Ying Chen ◽  
...  

With the rapid development of Internet of Things (IoT), massive sensor data are being generated by the sensors deployed everywhere at an unprecedented rate. As the number of Internet of Things devices is estimated to grow to 25 billion by 2021, when facing the explicit or implicit anomalies in the real-time sensor data collected from Internet of Things devices, it is necessary to develop an effective and efficient anomaly detection method for IoT devices. Recent advances in the edge computing have significant impacts on the solution of anomaly detection in IoT. In this study, an adaptive graph updating model is first presented, based on which a novel anomaly detection method for edge computing environment is then proposed. At the cloud center, the unknown patterns are classified by a deep leaning model, based on the classification results, the feature graphs are updated periodically, and the classification results are constantly transmitted to each edge node where a cache is employed to keep the newly emerging anomalies or normal patterns temporarily until the edge node receives a newly updated feature graph. Finally, a series of comparison experiments are conducted to demonstrate the effectiveness of the proposed anomaly detection method for edge computing. And the results show that the proposed method can detect the anomalies in the real-time sensor data efficiently and accurately. More than that, the proposed method performs well when there exist newly emerging patterns, no matter they are anomalous or normal.


2013 ◽  
Vol 336-338 ◽  
pp. 185-191
Author(s):  
Xiao Peng Xie ◽  
Dong Hui Wang ◽  
Guo Jian Huang ◽  
Xin Hua Wang

The arrangement positions and the quantities are different for different types of cranes. In order to make suitable decision, much investigate and survey was done at preliminary stage, and we know that the flange connected gate legs and turntables, the connections between load-bearing beam and rotary column under the engine room and the connections between jib and turntable are easy to lose efficient, and their mainly failure modes are cracks. By the method of finite element, 32 sensors (including 21 welding strain FBG sensors and 11 temperature FBG sensors) were used after doing much investigate and survey and finite element modeling analysis, which are arranged in different places of a gantry crane of MQ2533, for real-time structure health monitoring. This method makes the sensor data obtained more realistically reflects the crane structural condition, which provides reliable data support for crane safety monitoring and safety evaluation. Then a software platform is developed to monitor the real-time stress. If the real-time stress exceeds the allowable stress, it issues an alarm signal to the operator.


2017 ◽  
Vol 10 (2) ◽  
pp. 130-144 ◽  
Author(s):  
Iwan Aang Soenandi ◽  
Taufik Djatna ◽  
Ani Suryani ◽  
Irzaman Irzaman

Purpose The production of glycerol derivatives by the esterification process is subject to many constraints related to the yield of the production target and the lack of process efficiency. An accurate monitoring and controlling of the process can improve production yield and efficiency. The purpose of this paper is to propose a real-time optimization (RTO) using gradient adaptive selection and classification from infrared sensor measurement to cover various disturbances and uncertainties in the reactor. Design/methodology/approach The integration of the esterification process optimization using self-optimization (SO) was developed with classification process was combined with necessary condition optimum (NCO) as gradient adaptive selection, supported with laboratory scaled medium wavelength infrared (mid-IR) sensors, and measured the proposed optimization system indicator in the batch process. Business Process Modeling and Notation (BPMN 2.0) was built to describe the tasks of SO workflow in collaboration with NCO as an abstraction for the conceptual phase. Next, Stateflow modeling was deployed to simulate the three states of gradient-based adaptive control combined with support vector machine (SVM) classification and Arduino microcontroller for implementation. Findings This new method shows that the real-time optimization responsiveness of control increased product yield up to 13 percent, lower error measurement with percentage error 1.11 percent, reduced the process duration up to 22 minutes, with an effective range of stirrer rotation set between 300 and 400 rpm and final temperature between 200 and 210°C which was more efficient, as it consumed less energy. Research limitations/implications In this research the authors just have an experiment for the esterification process using glycerol, but as a development concept of RTO, it would be possible to apply for another chemical reaction or system. Practical implications This research introduces new development of an RTO approach to optimal control and as such marks the starting point for more research of its properties. As the methodology is generic, it can be applied to different optimization problems for a batch system in chemical industries. Originality/value The paper presented is original as it presents the first application of adaptive selection based on the gradient value of mid-IR sensor data, applied to the real-time determining control state by classification with the SVM algorithm for esterification process control to increase the efficiency.


2011 ◽  
Vol 63-64 ◽  
pp. 579-582
Author(s):  
De Rong Jiang

Driving System, which is programmed by C#, is a car driving manipulation to simulate the real car driving movement, obtain sense of simulation system. Obviously, Driving System has a lot of advantages as a driving system for fatigue detecting monitor. In driving system, there are three parts, which are the driving Environment, Data acquisition and Data analysis. Driving System can fulfill the interactivity and real time effectively, and has been used successfully in the drowsiness of driving, which can be familiarly analyzed with arithmetic of EEG.


Sign in / Sign up

Export Citation Format

Share Document