scholarly journals Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus

2014 ◽  
Vol 15 (2) ◽  
pp. 2465-2474 ◽  
Author(s):  
Zijian Li ◽  
Wanchun Sun ◽  
Donglin Wu ◽  
Xiang Gao ◽  
Ningning Sun ◽  
...  
1979 ◽  
Vol 57 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Theo Hofmann ◽  
Michiko Kawakami ◽  
Anthony J. W. Hitchman ◽  
Joan E. Harrison ◽  
Keith J. Dorrington

The complete amino acid sequence of the calcium-binding protein (CaBP) from pig intestinal mucosa has been determined: Ac-Ser-Ala-Gln-Lys-Ser-Pro-Ala-Glu-Leu-Lys-Ser-Ile-Phe-Glu-Lys-Tyr-Ala-Ala-Lys-Glu-Gly-Asp-Pro-Asn-Gln-Leu-Ser-Lys-Glu-Glu-Leu-Lys-Gln-Leu-Ile-Gln-Ala-Glu-Phe-Pro-Ser-Leu-Leu-Lys-Gly-Pro-Arg-Thr-Leu-Asp-Asp-Leu-Phe-Gln-Glu-Leu-Asp-Lys-Asn-Gly-Asn-Gly-Glu-Val-Ser-Phe-Glu-Glu-Phe-Gln-Val-Leu-Val-Lys-Lys-Ile-Ser-Gln-OH. The N-terminal octapeptide sequence was determined by mass spectrometry analysis by Morris and Dell. The first 45 residues of bovine CaBP differ only in six positions from the corresponding sequence of the porcine protein, except that the sequence starts in position two of the porcine sequence. The mammalian intestinal CaBP's belong to the troponin-C superfamily on the basis of an analysis by Barker and Dayhoff.


2008 ◽  
Vol 52 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Takuya Yano ◽  
Eri Nobusawa ◽  
Alexander Nagy ◽  
Setsuko Nakajima ◽  
Katsuhisa Nakajima

2014 ◽  
Vol 70 (a1) ◽  
pp. C481-C481
Author(s):  
Aditya Singh ◽  
Michael Colaneri ◽  
Jacqueline Vitali

Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamoyl-L-aspartate to form L-dihydroorotate in the third step of de novo pyrimidine biosynthesis. It is a Zinc metalloenzyme and a member of the aminohydrolase superfamily. There are two classes of the enzyme. Class I, typically ~45 kDa, is found in higher organisms, bacteria and yeast. Class II, typically ~38 kDa, is found in bacteria and fungi. Some organisms have multiple DHOase sequences. The M. jannaschii pyrC gene coding for DHOase was subcloned and expressed in E. coli. Protein purification consisted of ammonium sulfate precipitation, heat treatment at 850C, and phenyl-sepharose hydrophobic interaction chromatography. The protein was confirmed in the SDS gel using Liquid Chromatography-Mass Spectrometry (Proteomics Laboratory, Lerner Research Institute, Cleveland, OH). Size Exclusion Chromatography-Laser Light Scattering (Keck Biotechnology Laboratory, Yale University, New Haven, CT) indicated that the protein is a monomer in solution with a molecular weight of 47 kDa. A model constructed with the I-TASSER server (Zhang, 2008) suggested that the binding site contains only one Zn ion per monomer coordinated by the conserved His56, His58 and Asp302. Asp146 is further away and does not coordinate with the Zn ion. According to the mass spectrometry analysis, the protein does not contain a carboxylated lysine. Our progress on this study will be presented. Acknowledgements: We thank Dr. Belinda Willard (Lerner Research Institute) for the LC-MS and Dr. Ewa Folta-Stogniew (Yale University) for the SEC- LS analysis. The presentation was supported in part by a graduate faculty travel award and by a contribution from the Physics Department at Cleveland State University.


Toxicon ◽  
2008 ◽  
Vol 51 (8) ◽  
pp. 1499-1508 ◽  
Author(s):  
Elisabeth F. Schwartz ◽  
Thalita S. Camargos ◽  
Fernando Z. Zamudio ◽  
Luciano P. Silva ◽  
Carlos Bloch ◽  
...  

2007 ◽  
Vol 282 (46) ◽  
pp. 33583-33592 ◽  
Author(s):  
Nidhi Ahuja ◽  
Bjoern Schwer ◽  
Stefania Carobbio ◽  
David Waltregny ◽  
Brian J. North ◽  
...  

Sirtuins are homologues of the yeast transcriptional repressor Sir2p and are conserved from bacteria to humans. We report that human SIRT4 is localized to the mitochondria. SIRT4 is a matrix protein and becomes cleaved at amino acid 28 after import into mitochondria. Mass spectrometry analysis of proteins that coimmunoprecipitate with SIRT4 identified insulindegrading enzyme and the ADP/ATP carrier proteins, ANT2 and ANT3. SIRT4 exhibits no histone deacetylase activity but functions as an efficient ADP-ribosyltransferase on histones and bovine serum albumin. SIRT4 is expressed in islets of Langerhans and colocalizes with insulin-expressing β cells. Depletion of SIRT4 from insulin-producing INS-1E cells results in increased insulin secretion in response to glucose. These observations define a new role for mitochondrial SIRT4 in the regulation of insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document