Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum

Toxicon ◽  
2008 ◽  
Vol 51 (8) ◽  
pp. 1499-1508 ◽  
Author(s):  
Elisabeth F. Schwartz ◽  
Thalita S. Camargos ◽  
Fernando Z. Zamudio ◽  
Luciano P. Silva ◽  
Carlos Bloch ◽  
...  
1979 ◽  
Vol 57 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Theo Hofmann ◽  
Michiko Kawakami ◽  
Anthony J. W. Hitchman ◽  
Joan E. Harrison ◽  
Keith J. Dorrington

The complete amino acid sequence of the calcium-binding protein (CaBP) from pig intestinal mucosa has been determined: Ac-Ser-Ala-Gln-Lys-Ser-Pro-Ala-Glu-Leu-Lys-Ser-Ile-Phe-Glu-Lys-Tyr-Ala-Ala-Lys-Glu-Gly-Asp-Pro-Asn-Gln-Leu-Ser-Lys-Glu-Glu-Leu-Lys-Gln-Leu-Ile-Gln-Ala-Glu-Phe-Pro-Ser-Leu-Leu-Lys-Gly-Pro-Arg-Thr-Leu-Asp-Asp-Leu-Phe-Gln-Glu-Leu-Asp-Lys-Asn-Gly-Asn-Gly-Glu-Val-Ser-Phe-Glu-Glu-Phe-Gln-Val-Leu-Val-Lys-Lys-Ile-Ser-Gln-OH. The N-terminal octapeptide sequence was determined by mass spectrometry analysis by Morris and Dell. The first 45 residues of bovine CaBP differ only in six positions from the corresponding sequence of the porcine protein, except that the sequence starts in position two of the porcine sequence. The mammalian intestinal CaBP's belong to the troponin-C superfamily on the basis of an analysis by Barker and Dayhoff.


2007 ◽  
Vol 282 (46) ◽  
pp. 33583-33592 ◽  
Author(s):  
Nidhi Ahuja ◽  
Bjoern Schwer ◽  
Stefania Carobbio ◽  
David Waltregny ◽  
Brian J. North ◽  
...  

Sirtuins are homologues of the yeast transcriptional repressor Sir2p and are conserved from bacteria to humans. We report that human SIRT4 is localized to the mitochondria. SIRT4 is a matrix protein and becomes cleaved at amino acid 28 after import into mitochondria. Mass spectrometry analysis of proteins that coimmunoprecipitate with SIRT4 identified insulindegrading enzyme and the ADP/ATP carrier proteins, ANT2 and ANT3. SIRT4 exhibits no histone deacetylase activity but functions as an efficient ADP-ribosyltransferase on histones and bovine serum albumin. SIRT4 is expressed in islets of Langerhans and colocalizes with insulin-expressing β cells. Depletion of SIRT4 from insulin-producing INS-1E cells results in increased insulin secretion in response to glucose. These observations define a new role for mitochondrial SIRT4 in the regulation of insulin secretion.


2004 ◽  
Vol 181 (2) ◽  
pp. 347-354 ◽  
Author(s):  
L Marenah ◽  
PR Flatt ◽  
DF Orr ◽  
S McClean ◽  
C Shaw ◽  
...  

Few studies have comprehensively examined amphibian granular gland secretions for novel insulinotropic peptides. This study involved isolation and characterisation of biologically active peptides from the skin secretions of Rana palustris frogs. Crude secretions obtained by mild electrical stimulation from the dorsal skin surface were purified by reversed-phase HPLC on a semipreparative Vydac C18 column, yielding 80 fractions. These fractions were assayed for insulin-releasing activity using glucose-responsive BRIN-BD11 cells. Acute 20 min incubations were performed in Krebs Ringer bicarbonate buffer supplemented with 5.6 mmol/l glucose in the absence (control) and presence of various fractions. Fractions 29-54 and fractions 68-75 showed significant 2.0-6.5-fold increases in insulin-releasing activity (P<0.001). The fractions showing most prominent insulinotropic activity were further purified to single homogeneous peaks, which, on testing, evoked 1.5-2.8-fold increases in insulin release (P<0.001). The structures of the purified peptides were determined by mass spectrometry and N-terminal amino acid sequencing. Electrospray ionisation ion-trap mass spectrometry analysis revealed molecular masses of 2873.5-8560.4 Da. Sufficient material was isolated to determine the primary amino acid sequence of the 2873.5 Da peptide, revealing a 27 amino acid sequence, ALSILRGLEKLAKMGIALTNCKATKKC, repressing palustrin-1c. The database search for this peptide showed a 48% homology with brevinin-1, an antimicrobial peptide isolated from various Rana species, which itself stimulated insulin release from BRIN-BD11 cells in a concentration-dependent manner. In conclusion, the skin secretions of R. palustris frogs contain a novel class of peptides with insulin-releasing activity that merit further investigation.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Humaira Saleh Syed ◽  
Rishimol R ◽  
Arun Kumar J ◽  
M Masilamani Selvam ◽  
Rajesh R P

Conus loroisii is a marine vermivorous snail found profusely in the southern seas of India. They harbor several toxic peptide components commonly called as ‘conotoxins’. In this study, we have identified and sequenced five conotoxins using proteome based tandem mass spectrometry analysis through Data analysis 4.1 software. Among them, we found Lo959 as contryphan which is previously described. All other conotoxins Lo1702, Lo1410, Lo1385 and Lo1686 belong to M-Superfamily conotoxins and novel to C. loroisii. Lo1410 is completely novel to conotoxin research with 3 disulfides and the amino acid sequence is derived as CCSTNCAVCIPCCP. All the identified M-Superfamily conotoxins are sub categorised to mini M2 superfamily conotoxins. Lo1702 and Lo1686 possess C- terminal amidation which is the key feature in conotoxins.  Moreover, we have screened the natural venom for the occurrence of toxicity in the zebrafish model and brine shrimp. 


2003 ◽  
Vol 49 (6) ◽  
pp. 873-879 ◽  
Author(s):  
Ralf Labugger ◽  
Jeremy A Simpson ◽  
Michelle Quick ◽  
Heather A Brown ◽  
Christine E Collier ◽  
...  

Abstract Background: Cardiac troponins are modified during ischemic injury and are found as a heterogeneous mixture in blood of patients with cardiovascular diseases. We present a strategy to isolate cardiac troponins from human biological material, by use of affinity chromatography, and to provide samples ready for direct analysis by mass spectrometry. Methods: Cardiac troponins were isolated from human left ventricular tissue by affinity chromatography. Isolated troponins were either eluted and analyzed by Western blot or enzymatically digested while bound to affinity beads. The resulting peptide mixture was subjected to mass spectrometry for protein identification and characterization. The same method was used to analyze serum from patients with acute myocardial infarction (AMI). Results: Affinity chromatography with antibodies specific for one cardiac troponin subunit facilitated the isolation of the entire cardiac troponin complex from myocardial tissue. The three different proteases used for enzymatic digestion increased the total protein amino acid sequence coverage by mass spectrometry for the three cardiac troponin subunits. Combined amino acid sequence coverages for cardiac troponin I, T, and C (cTnI, cTnT, cTnC) were 54%, 48%, and 40%, respectively. To simulate matrix effects on the affinity chromatography–mass spectrometry approach, we diluted tissue homogenate in cardiac troponin-free serum. Sequence coverages in this case were 44%, 41%, and 19%, respectively. Finally, affinity chromatography–mass spectrometry analysis of AMI serum revealed the presence of cardiac troponins in a wide variety of its free and/or complexed subunits, including the binary cTnI-cTnC and cTnI-cTnC-cTnT complexes. Conclusions: Affinity chromatography–mass spectrometry allows the extraction and analysis of cardiac troponins from biological samples in their natural forms. We were, for the first time, able to directly confirm the presence of cardiac troponin complexes in human serum after AMI. This approach could assist in more personalized risk stratification as well as the search for reference materials for cardiac troponin diagnostics.


Sign in / Sign up

Export Citation Format

Share Document