scholarly journals Bornyl cis-4-Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through FAK/PI3K/Akt/mTOR and MAPK Signaling Pathways and Inhibition of the Epithelial-to-Mesenchymal Transition

2018 ◽  
Vol 19 (8) ◽  
pp. 2152 ◽  
Author(s):  
Tzu-Yen Yang ◽  
Mei-Li Wu ◽  
Chi-I Chang ◽  
Chih-I Liu ◽  
Te-Chih Cheng ◽  
...  

Bornyl cis-4-hydroxycinnamate, a bioactive compound isolated from Piper betle stems, has the potential for use as an anti-cancer agent. This study investigated the effects of bornyl cis-4-hydroxycinnamate on cell migration and invasion in melanoma cells. Cell migration and invasion were compared in A2058 and A375 melanoma cell lines treated with/without bornyl cis-4-hydroxycinnamate (1–6 µM). To examine whether bornyl cis-4-hydroxycinnamate has a potential anti-metastatic effect on melanoma cells, cell migration and invasion assays were performed using a Boyden chamber assay and a transwell chamber in A2058 and A375 cells. Gelatin zymography was employed to determine the enzyme activities of MMP-2 and MMP-9. Cell lysates were collected for Western blotting analysis of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of metalloproteinase-1/2 (TIMP-1/2), as well as key molecules in the mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK)/ phosphatidylinositide-3 kinases (PI3K)/Akt/ mammalian target of rapamycin (mTOR), growth factor receptor-bound protein 2 (GRB2) signaling pathways. Our results demonstrated that bornyl cis-4-hydroxycinnamate is a potentially useful agent that inhibits melanoma cell migration and invasion, and altered melanoma cell metastasis by reducing MMP-2 and MMP-9 expression through inhibition of the FAK/PI3K/Akt/mTOR, MAPK, and GRB2 signaling pathways. Moreover, bornyl cis-4-hydroxycinnamate inhibited the process of the epithelial-to-mesenchymal transition in A2058 and A375 melanoma cells. These findings suggested that bornyl cis-4-hydroxycinnamate has potential as a chemotherapeutic agent, and warrants further investigation for its use in the management of human melanoma.

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Jih-Tung Pai ◽  
Yi-Chin Lee ◽  
Si-Ying Chen ◽  
Yann-Lii Leu ◽  
Meng-Shih Weng

Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT) through the regulation of epidermal growth factor receptor (EGFR) signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (ERK) signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.


Author(s):  
Jye-Yu Huang ◽  
Shu-Fen Peng ◽  
Fu-Shin Chueh ◽  
Po-Yuan Chen ◽  
Yi-Ping Huang ◽  
...  

ABSTRACT Gastric cancer has a poor prognosis; once cancer has metastasized, it can easily lead to patient death. Melittin is one of the major components extracted from the bee venom. It has been shown that melittin emerges antitumor activities against many human cancer cell lines. Our results indicated that melittin at 0.2-0.5 µm significantly reduced total cell viability in human gastric cancer AGS cells. At low concentrations (0.05-0.15 µm), melittin displayed antimetastasis effects and inhibited cell adhesion and colony formation. Besides, it inhibited cell motility and suppressed cell migration and invasion. Melittin inhibited the activities of MMP-2 and MMP-9 and the integrity of cell membrane in AGS cells. Furthermore, Western blotting results showed that melittin decreased the protein expressions of Wnt/BMP and MMP-2 signaling pathways. Based on these observations, melittin inhibited cell migration and invasion of AGS cells through multiple signaling pathways. It may be used to treat metastasized gastric cancers in the future.


Sign in / Sign up

Export Citation Format

Share Document