scholarly journals Protective Effects of Rhodiola Crenulata Extract on Hypoxia-Induced Endothelial Damage via Regulation of AMPK and ERK Pathways

2018 ◽  
Vol 19 (8) ◽  
pp. 2286 ◽  
Author(s):  
Pi-Kai Chang ◽  
I-Chuan Yen ◽  
Wei-Cheng Tsai ◽  
Tsu-Chung Chang ◽  
Shih-Yu Lee

Rhodiola crenulata root extract (RCE) has been shown to possess protective activities against hypoxia both in vitro and in vivo. However, the effects of RCE on response to hypoxia in the endothelium remain unclear. In this study, we aimed to examine the effects of RCE in endothelial cells challenged with hypoxic exposure and to elucidate the underlying mechanisms. Human umbilical vein endothelial cells were pretreated with or without RCE and then exposed to hypoxia (1% O2) for 24 h. Cell viability, nitric oxide (NO) production, oxidative stress markers, as well as mechanistic readouts were studied. We found that hypoxia-induced cell death, impaired NO production, and oxidative stress. These responses were significantly attenuated by RCE treatment and were associated with the activation of AMP-activated kinase and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, we showed that RCE protected endothelial cells from hypoxic insult and suggested that R. crenulata might be useful for the prevention of hypoxia-associated vascular dysfunction.

2016 ◽  
Vol 231 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Mahendra Prasad Bhatt ◽  
Yeon-Ju Lee ◽  
Se-Hui Jung ◽  
Yong Ho Kim ◽  
Jong Yun Hwang ◽  
...  

C-peptide exerts protective effects against diabetic complications; however, its role in inhibiting hyperglycemic memory (HGM) has not been elucidated. We investigated the beneficial effect of C-peptide on HGM-induced vascular damage in vitro and in vivo using human umbilical vein endothelial cells and diabetic mice. HGM induced apoptosis by persistent generation of intracellular ROS and sustained formation of ONOO− and nitrotyrosine. These HGM-induced intracellular events were normalized by treatment with C-peptide, but not insulin, in endothelial cells. C-peptide also inhibited persistent upregulation of p53 and activation of mitochondrial adaptor p66shc after glucose normalization. Further, C-peptide replacement therapy prevented persistent generation of ROS and ONOO− in the aorta of diabetic mice whose glucose levels were normalized by the administration of insulin. C-peptide, but not insulin, also prevented HGM-induced endothelial apoptosis in the murine diabetic aorta. This study highlights a promising role for C-peptide in preventing HGM-induced intracellular events and diabetic vascular damage.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng Yang ◽  
Qing-Qing Wu ◽  
Yang Xiao ◽  
Ming Xia Duan ◽  
Chen Liu ◽  
...  

Whether aucubin could protect myocardial infarction- (MI-) induced cardiac remodeling is not clear. In this study, in a mouse model, cardiac remodeling was induced by left anterior descending coronary artery ligation surgery. Mice were intraperitoneally injected with aucubin (10 mg/kg) 3 days post-MI. Two weeks post-MI, mice in the aucubin treatment group showed decreased mortality, decreased infarct size, and improved cardiac function. Aucubin also decreased cardiac remodeling post-MI. Consistently, aucubin protected cardiomyocytes against hypoxic injury in vitro. Mechanistically, we found that aucubin inhibited the ASK1/JNK signaling. These effects were abolished by the JNK activator. Moreover, we found that the oxidative stress was attenuated in both in vivo aucubin-treated mice heart and in vitro-treated cardiomyocytes, which caused decreased thioredoxin (Trx) consumption, leading to ASK1 forming the inactive complex with Trx. Aucubin increased nNOS-derived NO production in vivo and vitro. The protective effects of aucubin were reversed by the NOS inhibitors L-NAME and L-VINO in vitro. Furthermore, nNOS knockout mice also reversed the protective effects of aucubin on cardiac remodeling. Taken together, aucubin protects against cardiac remodeling post-MI through activation of the nNOS/NO pathway, which subsequently attenuates the ROS production, increases Trx preservation, and leads to inhibition of the ASK1/JNK pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mengyang Zhang ◽  
Changcheng Luo ◽  
Dongxu Lin ◽  
Kai Cui ◽  
Zhong Chen ◽  
...  

Objective. The aim of the present study was to investigate the protective effects and mechanisms of KLK1 on aging-related prostate alterations and search clues about the application of KLK1 to the treatment of human BPH. Methods. Thirty-six rats including 26 male wild-type SD rats and 10 transgenic rats were fed to 3- or 18-month-old and divided into three groups: young WTR (yWTR) as the control ( n = 16 ), aged WTR (aWTR) ( n = 10 ), and aged TGR (aTGR) ( n = 10 ). The prostates of the three groups of rats (10 rats per group) were harvested to evaluate the levels of KLK1 expression, oxidative stress, fibrosis, and involved signaling pathways, such as NO/cGMP, COX-2/PTGIS/cAMP, and TGF-β1/RhoA/ROCK1, via quantitative PCR, Western blot, histological examinations, and ELISA. Moreover, the remaining 6 yWTRs were sacrificed to obtain primary prostate fibroblast and aortic endothelial cells, and a coculture system was built with the cells for the verification of above signaling pathways in vitro. And the direct effects of bradykinin on prostate cells were detected by MTT experiment. Prostate specimens of 47 patients (age from 48 to 92 years) undergoing BPH surgery were collected after approval. Histological examinations and KLK1 IHC were preformed to analyze the relationship between KLK1 expression and age and prostate fibrosis. Results. The human KLK1 gene only existed and was expressed in aTGR. The prostate of young rats expressed more KLK1 than the aged and the expression of KLK1 in prostate decreased with age in humans ( r = − 0.347 , P = 0.018 ). Compared to the aWTR group, the yWTR and aTGR groups showed milder fibrosis, less oxidative stress, upregulated NO/cGMP, and COX-2/PTGIS/cAMP signaling pathways and inhibited TGF-β1/RhoA/ROCK1 signaling pathway. In the coculture system, KLK1 suppressed TGF-β1-mediated fibroblast-to-myofibroblast transdifferentiation via cleaving LMWK to produce the BK which upregulate eNOS expression and NO production in endothelial cells. BK not only slightly stimulated the proliferation ability of prostatic stromal cells but also upregulated iNOS and inhibited TGF-β1 expression in them. Conclusion. KLK1 protects prostate from oxidative stress and fibrosis via amplified NO/cGMP signal in aged rats. The decrease of KLK1 expression with aging is laying the groundwork for the application of KLK1 to the treatment of human BPH. The current experimental data showed that the side effects of KLK1 on the prostate cell were not obvious.


2007 ◽  
Vol 97 (05) ◽  
pp. 830-838 ◽  
Author(s):  
Su-Jie Jia ◽  
Kui Song ◽  
Guang-Ping Wang ◽  
Yuan-Jian Li ◽  
Hong-Ya Xin ◽  
...  

SummaryPrevious studies have shown the regulatory effect of nitric oxide (NO) on endotoxin-induced tissue factor (TF) in endothelial cells. Asymmetric dimethylarginine (ADMA), a major endogenous NO synthase (NOS) inhibitor, could inhibit NO production in vivo and in vitro. ADMA and its major hydrolase dimethylarginine dimethylaminohydrolase (DDAH) have recently been thought of as a novel regulatory system of endogenous NO production. The aim of the present study was to determine whether the DDAH/ADMA pathway is involved in the effect of lipopolysaccharide (LPS) on TF expression in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were treated with LPS (1 µ g/ml) to induce TF expression. Exogenous ADMA significantly enhanced the increase in both TF mRNA level and activity induced by LPS, whereas L-arginine, the NOS substrate, markedly attenuated the LPS-induced TF increment. LPS markedly increased the level of ADMA in cultured medium and decreased DDAH activity in endothelial cells, and overexpression of DDAH2 could significantly suppress LPS-induced TF increment in endothelial cells. LPS could increase intracellular reactive oxygen species (ROS) production and activate nuclear factor-κ B, which were enhanced by exogenous ADMA and attenuated by either L-arginine or overexpression of DDAH2. Therefore, our present results for the first time suggest that the DDAH/ADMA pathway can regulate LPS-inducedTF expression via ROS-nuclear factor- κ B-dependent pathway in endothelial cells.


1988 ◽  
Vol 16 (1) ◽  
pp. 38-41
Author(s):  
Rosella Sbarbati ◽  
Maria Luisa Schinetti ◽  
Maria Scarlattini

Cultured human endothelial cells can replace living animals in studying the toxic role of noxious agents in the pathogenesis of vascular diseases and in the elucidation of the mechanism of action of protective drugs. Preliminary data are presented which examine the effects that oxidative stress produces on human endothelial cells in vitro. Human umbilical vein endothelial cells were subjected to an anoxia-re-oxygenation treatment and tested for the production of Super Oxide Dismutase (SOD)-inhibitable superoxide radicals. The results show that under our experimental conditions endothelial cells produce oxygen-free radicals and that the generation reaches a maximum after an anoxic challenge of 20 minutes. We conclude that the in vitro system presented in this paper could be a suitable tool for further studies on the effects of oxidative stress on the vascular endothelium, which mimics the in vivo conditions of re-perfusion after heart ischemia.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2210
Author(s):  
Maria Pompea Antonia Baldassarre ◽  
Pamela Di Tomo ◽  
Giorgia Centorame ◽  
Assunta Pandolfi ◽  
Natalia Di Pietro ◽  
...  

Myo-inositol (Myo) improves insulin resistance, glucose metabolism, and helps gestational diabetes (GDM) management. GDM is associated with a pro-inflammatory state and increased oxidative stress, which are both involved in vascular damage in diabetes. Our aim was to study Myo anti-inflammatory/antioxidant potential effects on an in vitro model of human umbilical vein endothelial cells (HUVECs). To this end, monocyte cell adhesion to HUVECs, adhesion molecule membrane exposure, and oxidative stress levels were determined in cells from control (C-) and GDM women treated during pregnancy either with diet only (GD-) or with diet plus Myo (GD+Myo). To deeply study the vascular effects of Myo, the same evaluations were performed in C- and GD-HUVECs following 48 h in vitro stimulation with Myo. Notably, we first observed that GD-HUVECs obtained from women assuming Myo supplementation exhibited a significantly decreased number of monocytes that adhered to endothelial cells, less adhesion molecule exposure, and lower intracellular reactive oxygen species (ROS) levels in the basal state as compared to GD-HUVECs obtained from women treated by diet only. This Myo anti-inflammatory/antioxidant effect was confirmed by 48 h in vitro stimulation of GD-HUVECs as compared to controls. Altogether, these results strongly suggest that Myo may exert protective actions against chronic inflammation induced by endothelial dysfunction in diabetes.


2017 ◽  
Vol 45 (06) ◽  
pp. 1201-1216 ◽  
Author(s):  
Li-Yen Huang ◽  
I-Chuan Yen ◽  
Wei-Cheng Tsai ◽  
Blerina Ahmetaj-Shala ◽  
Tsu-Chung Chang ◽  
...  

Rhodiola crenulata root extract (RCE), a traditional Chinese medicine, has been shown to regulate glucose and lipid metabolism via the AMPK pathway in high glucose (HG) conditions. However, the effect of RCE on HG-induced endothelial dysfunction remains unclear. The present study was designed to examine the effects and mechanisms of RCE against hyperglycemic insult in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were pretreated with or without RCE and then exposed to 33[Formula: see text]mM HG medium. The cell viability, nitrite production, oxidative stress markers, and vasoactive factors, as well as the mechanisms underlying RCE action, were then investigated. We found that RCE significantly improved cell death, nitric oxide (NO) defects, and oxidative stress in HG conditions. In addition, RCE significantly decreased the HG-induced vasoactive markers, including endothelin-1 (ET-1), fibronectin, and vascular endothelial growth factor (VEGF). However, the RCE-restored AMPK-Akt-eNOS-NO axis and cell viability were abolished by the presence of an AMPK inhibitor. These findings suggested that the protective effects of RCE were associated with the AMPK-Akt-eNOS-NO signaling pathway. In conclusion, we showed that RCE protected endothelial cells from hyperglycemic insult and demonstrated its potential for use as a treatment for endothelial dysfunction in diabetes mellitus.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Azizah Ugusman ◽  
Zaiton Zakaria ◽  
Kien Hui Chua ◽  
Nor Anita Megat Mohd Nordin ◽  
Zaleha Abdullah Mahdy

Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H2O2; treatment with 300 μM rutin; and concomitant induction with rutin and H2O2for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P<0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells’ NO production (P<0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P<0.05), eNOS protein synthesis (P<0.01), and eNOS activity (P<0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


1997 ◽  
Vol 77 (06) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ulrich M Vischer ◽  
Claes B Wollheinn

Summaryvon Willebrand factor (vWf) is released from endothelial cell storage granules after stimulation with thrombin, histamine and several other agents that induce an increase in cytosolic free calcium ([Ca2+]i). In vivo, epinephrine and the vasopressin analog DDAVP increase vWf plasma levels, although they are thought not to induce vWf release from endothelial cells in vitro. Since these agents act via a cAMP-dependent pathway in responsive cells, we examined the role of cAMP in vWf secretion from cultured human umbilical vein endothelial cells. vWf release increased by 50% in response to forskolin, which activates adenylate cyclase. The response to forskolin was much stronger when cAMP degradation was blocked with IBMX, an inhibitor of phosphodiesterases (+200%), whereas IBMX alone had no effect. vWf release could also be induced by the cAMP analogs dibutyryl-cAMP (+40%) and 8-bromo-cAMP (+25%); although their effect was weak, they clearly potentiated the response to thrombin. Epinephrine (together with IBMX) caused a small, dose-dependent increase in vWf release, maximal at 10-6 M (+50%), and also potentiated the response to thrombin. This effect is mediated by adenylate cyclase-coupled β-adrenergic receptors, since it is inhibited by propranolol and mimicked by isoproterenol. In contrast to thrombin, neither forskolin nor epinephrine caused an increase in [Ca2+]j as measured by fura-2 fluorescence. In addition, the effects of forskolin and thrombin were additive, suggesting that they act through distinct signaling pathways. We found a close correlation between cellular cAMP content and vWf release after stimulation with epinephrine and forskolin. These results demonstrate that cAMP-dependent signaling events are involved in the control of exocytosis from endothelial cells (an effect not mediated by an increase in [Ca2+]i) and provide an explanation for epinephrine-induced vWf release.


Sign in / Sign up

Export Citation Format

Share Document