Regulation by DDAH/ADMA pathway of lipopolysaccharideinduced tissue factor expression in endothelial cells

2007 ◽  
Vol 97 (05) ◽  
pp. 830-838 ◽  
Author(s):  
Su-Jie Jia ◽  
Kui Song ◽  
Guang-Ping Wang ◽  
Yuan-Jian Li ◽  
Hong-Ya Xin ◽  
...  

SummaryPrevious studies have shown the regulatory effect of nitric oxide (NO) on endotoxin-induced tissue factor (TF) in endothelial cells. Asymmetric dimethylarginine (ADMA), a major endogenous NO synthase (NOS) inhibitor, could inhibit NO production in vivo and in vitro. ADMA and its major hydrolase dimethylarginine dimethylaminohydrolase (DDAH) have recently been thought of as a novel regulatory system of endogenous NO production. The aim of the present study was to determine whether the DDAH/ADMA pathway is involved in the effect of lipopolysaccharide (LPS) on TF expression in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were treated with LPS (1 µ g/ml) to induce TF expression. Exogenous ADMA significantly enhanced the increase in both TF mRNA level and activity induced by LPS, whereas L-arginine, the NOS substrate, markedly attenuated the LPS-induced TF increment. LPS markedly increased the level of ADMA in cultured medium and decreased DDAH activity in endothelial cells, and overexpression of DDAH2 could significantly suppress LPS-induced TF increment in endothelial cells. LPS could increase intracellular reactive oxygen species (ROS) production and activate nuclear factor-κ B, which were enhanced by exogenous ADMA and attenuated by either L-arginine or overexpression of DDAH2. Therefore, our present results for the first time suggest that the DDAH/ADMA pathway can regulate LPS-inducedTF expression via ROS-nuclear factor- κ B-dependent pathway in endothelial cells.

1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


2018 ◽  
Vol 19 (8) ◽  
pp. 2286 ◽  
Author(s):  
Pi-Kai Chang ◽  
I-Chuan Yen ◽  
Wei-Cheng Tsai ◽  
Tsu-Chung Chang ◽  
Shih-Yu Lee

Rhodiola crenulata root extract (RCE) has been shown to possess protective activities against hypoxia both in vitro and in vivo. However, the effects of RCE on response to hypoxia in the endothelium remain unclear. In this study, we aimed to examine the effects of RCE in endothelial cells challenged with hypoxic exposure and to elucidate the underlying mechanisms. Human umbilical vein endothelial cells were pretreated with or without RCE and then exposed to hypoxia (1% O2) for 24 h. Cell viability, nitric oxide (NO) production, oxidative stress markers, as well as mechanistic readouts were studied. We found that hypoxia-induced cell death, impaired NO production, and oxidative stress. These responses were significantly attenuated by RCE treatment and were associated with the activation of AMP-activated kinase and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, we showed that RCE protected endothelial cells from hypoxic insult and suggested that R. crenulata might be useful for the prevention of hypoxia-associated vascular dysfunction.


1999 ◽  
Vol 81 (06) ◽  
pp. 984-988 ◽  
Author(s):  
Eva Norström ◽  
Johan Sundelin ◽  
Sverker Nystedt ◽  
Anna-Karin Alm

SummaryProteolytically activated receptors define a new subclass among the G-protein coupled receptors. Proteinase activated receptor-2 (PAR-2), the second member to be identified of this growing receptor subclass, can be activated by trypsin and trypsin-like serine proteases such as mast cell tryptase. PAR-2 is expressed in endothelial cells. Here we have studied if activation of PAR-2 changes the coagulation properties of cultured human umbilical vein endothelial cells. We show that activation of PAR-2 induces rapid and transient formation of tissue factor mRNA with a maximum level 1 hour after receptor stimulation. The increased mRNA level was accompanied by an increased tissue factor activity at the endothelial cell surface, shortening coagulation time in a standard clotting assay. The level of tissue factor activity after PAR-2 activation was comparable with the effects of thrombin receptor (PAR-1) activation although neither of the two protease receptors were as strong inducers of tissue factor as tumor necrosis factor-α.


1997 ◽  
Vol 77 (06) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ulrich M Vischer ◽  
Claes B Wollheinn

Summaryvon Willebrand factor (vWf) is released from endothelial cell storage granules after stimulation with thrombin, histamine and several other agents that induce an increase in cytosolic free calcium ([Ca2+]i). In vivo, epinephrine and the vasopressin analog DDAVP increase vWf plasma levels, although they are thought not to induce vWf release from endothelial cells in vitro. Since these agents act via a cAMP-dependent pathway in responsive cells, we examined the role of cAMP in vWf secretion from cultured human umbilical vein endothelial cells. vWf release increased by 50% in response to forskolin, which activates adenylate cyclase. The response to forskolin was much stronger when cAMP degradation was blocked with IBMX, an inhibitor of phosphodiesterases (+200%), whereas IBMX alone had no effect. vWf release could also be induced by the cAMP analogs dibutyryl-cAMP (+40%) and 8-bromo-cAMP (+25%); although their effect was weak, they clearly potentiated the response to thrombin. Epinephrine (together with IBMX) caused a small, dose-dependent increase in vWf release, maximal at 10-6 M (+50%), and also potentiated the response to thrombin. This effect is mediated by adenylate cyclase-coupled β-adrenergic receptors, since it is inhibited by propranolol and mimicked by isoproterenol. In contrast to thrombin, neither forskolin nor epinephrine caused an increase in [Ca2+]j as measured by fura-2 fluorescence. In addition, the effects of forskolin and thrombin were additive, suggesting that they act through distinct signaling pathways. We found a close correlation between cellular cAMP content and vWf release after stimulation with epinephrine and forskolin. These results demonstrate that cAMP-dependent signaling events are involved in the control of exocytosis from endothelial cells (an effect not mediated by an increase in [Ca2+]i) and provide an explanation for epinephrine-induced vWf release.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2012 ◽  
Vol 123 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Ting-Hsing Chao ◽  
Shih-Ya Tseng ◽  
Yi-Heng Li ◽  
Ping-Yen Liu ◽  
Chung-Lung Cho ◽  
...  

Cilostazol is an anti-platelet agent with vasodilatory activity that acts by increasing intracellular concentrations of cAMP. Recent reports have suggested that cilostazol may promote angiogenesis. In the present study, we have investigated the effect of cilostazol in promoting angiogenesis and vasculogenesis in a hindlimb ischaemia model and have also examined its potential mechanism of action in vitro and in vivo. We found that cilostazol treatment significantly increased colony formation by human early EPCs (endothelial progenitor cells) through a mechanism involving the activation of cAMP/PKA (protein kinase A), PI3K (phosphoinositide 3-kinase)/Akt/eNOS (endothelial NO synthase) and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) signalling pathways. Cilostazol also enhanced proliferation, chemotaxis, NO production and vascular tube formation in HUVECs (human umbilical vein endothelial cells) through activation of multiple signalling pathways downstream of PI3K/Akt/eNOS. Cilostazol up-regulated VEGF (vascular endothelial growth factor)-A165 expression and secretion of VEGF-A in HUVECs through activation of the PI3K/Akt/eNOS pathway. In a mouse hindlimb ischaemia model, recovery of blood flow ratio (ipsilateral/contralateral) 14 days after surgery was significantly improved in cilostazol-treated mice (10 mg/kg of body weight) compared with vehicle-treated controls (0.63±0.07 and 0.43±0.05 respectively, P<0.05). Circulating CD34+ cells were also increased in cilostazol-treated mice (3614±670 compared with 2151±608 cells/ml, P<0.05). Expression of VEGF and phosphorylation of PI3K/Akt/eNOS and ERK/p38 MAPK in ischaemic muscles were significantly enhanced by cilostazol. Our data suggest that cilostazol produces a vasculo-angiogenic effect by up-regulating a broad signalling network that includes the ERK/p38 MAPK, VEGF-A165, PI3K/Akt/eNOS and cAMP/PKA pathways.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Helong Zhao ◽  
Appakkudal Anand ◽  
Ramesh Ganju

Abstract Introduction: Lipopolysaccharide (LPS) is one of the critical factors which induce endothelial inflammation during the pathogenesis of atherosclerosis, endocarditis and sepsis shock induced heart injury. The secretory Slit2 protein and its endothelial receptors Robo1 and Robo4 have been shown to regulate mobility and permeability of endothelial cells, which could be functional in regulating LPS induced endothelial inflammation. Hypothesis: We hypothesized that in addition to regulating permeability and migration of endothelial cells, Slit2-Robo1/4 signaling might regulate other LPS-induced endothelial inflammatory responses. Methods and Results: Using Human Umbilical Vein Endothelial Cells (HUVEC) culture, we observed that Slit2 treatment suppressed LPS-induced secretion of pro-inflammatory cytokines (including GM-CSF), cell adhesion molecule upregulation and monocyte (THP-1 cell) adhesion. With siRNA knock down techniques, we further confirmed that this anti-inflammatory effect is mediated by the interaction of Slit2 with its dominant receptor in endothelial cells, Robo4, though the much lesser expressed minor receptor Robo1 is pro-inflammatory. Our signaling studies showed that downstream of Robo4, Slit2 suppressed inflammatory gene expression by inhibiting the Pyk2 - NF-kB pathway following LPS-TLR4 interaction. In addition, Slit2 can induce a positive feedback to its expression and downregulate the pro-inflammatory Robo1 receptor via mediation of miR-218. Moreover, both in in vitro studies using HUVEC and in vivo mouse model studies indicated that LPS also causes endothelial inflammation by downregulating the anti-inflammatory Slit2 and Robo4 and upregulating the pro-inflammatory Robo1 during endotoxemia, especially in mouse arterial endothelial cells and whole heart. Conclusions: Slit2-Robo1/4 signaling is important in regulation of LPS induced endothelial inflammation, and LPS in turn causes inflammation by interfering with the expression of Slit2, Robo1 and Robo4. This implies that Slit2-Robo1/4 is a key regulator of endothelial inflammation and its dysregulation during endotoxemia is a novel mechanism for LPS induced cardiovascular pathogenesis.


2018 ◽  
Vol 19 (9) ◽  
pp. 2753 ◽  
Author(s):  
Nina Zippel ◽  
Annemarieke Loot ◽  
Heike Stingl ◽  
Voahanginirina Randriamboavonjy ◽  
Ingrid Fleming ◽  
...  

AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα−/−) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
Chia Hsin Yeh ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

Abstract Endothelial integrins play an essential role in angiogenesis and cell survival. Accutin, a new member of disintegrin family derived from venom of Agkistrodon acutus, potently inhibited human platelet aggregation caused by various agonists (eg, thrombin, collagen, and, adenosine diphosphate [ADP]) through the blockade of fibrinogen binding to platelet glycoprotein IIb/IIIa (ie, integrin IIbβ3). In this report, we describe that accutin specifically inhibited the binding of monoclonal antibody (MoAb) 7E3, which recognizes integrin vβ3, to human umbilical vein endothelial cells (HUVECs), but not those of other anti-integrin MoAbs such as 2β1, 3β1, and 5β1. Moreover, accutin, but not the control peptide GRGES, dose-dependently inhibited the 7E3 interaction with HUVECs. Both 7E3 and GRGDS, but not GRGES or Integrelin, significantly blocked fluorescein isothiocyanate-conjugated accutin binding to HUVEC. In functional studies, accutin exhibited inhibitory effects on HUVEC adhesion to immobilized fibrinogen, fibronectin and vitronectin, and the capillary-like tube formation on Matrigel in a dose- and RGD-dependent manner. In addition, it exhibited an effective antiangiogenic effect in vivo when assayed by using the 10-day-old embryo chick CAM model. Furthermore, it potently induced HUVEC apoptotic DNA fragmentation as examined by electrophoretic and flow cytometric assays. In conclusion, accutin inhibits angiogenesis in vivo and in vitro by blocking integrin vβ3 of endothelial cells and by inducing apoptosis. The antiangiogenic activity of disintegrins might be explored as the target of developing the potential antimetastatic agents. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document