scholarly journals Optical Graphene-Based Biosensor for Nucleic Acid Detection; Influence of Graphene Functionalization and Ionic Strength

2018 ◽  
Vol 19 (10) ◽  
pp. 3230 ◽  
Author(s):  
Diana Becheru ◽  
George Vlăsceanu ◽  
Adela Banciu ◽  
Eugeniu Vasile ◽  
Mariana Ioniţă ◽  
...  

A main challenge for optical graphene-based biosensors detecting nucleic acid is the selection of key parameters e.g. graphenic chemical structure, nanomaterial dispersion, ionic strength, and appropriate molecular interaction mechanisms. Herein we study interactions between a fluorescein-labelled DNA (FAM-DNA) probe and target single-stranded complementary DNA (cDNA) on three graphenic species, aiming to determine the most suitable platform for nucleic acid detection. Graphene oxide (GO), carboxyl graphene (GO-COOH) and reduced graphene oxide functionalized with PEGylated amino groups (rGO-PEG-NH2, PEG (polyethylene glycol)) were dispersed and characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The influence of ionic strength on molecular interaction with DNA was examined by fluorescence resonance energy transfer (FRET) comparing fluorescence intensity and anisotropy. Results indicated an effect of graphene functionalization, dispersion and concentration-dependent quenching, with GO and GO-COOH having the highest quenching abilities for FAM-DNA. Furthermore, GO and GO-COOH quenching was accentuated by the addition of either MgCl2 or MgSO4 cations. At 10 mM MgCl2 or MgSO4, the cDNA induced a decrease in fluorescence signal that was 2.7-fold for GO, 3.4-fold for GO-COOH and 4.1-fold for rGO-PEG-NH2. Best results, allowing accurate target detection, were observed when selecting rGO-PEG-NH2, MgCl2 and fluorescence anisotropy as an advantageous combination suitable for nucleic acid detection and further rational design biosensor development.

2015 ◽  
Vol 51 (78) ◽  
pp. 14597-14600 ◽  
Author(s):  
Jieon Lee ◽  
Ginam Park ◽  
Dal-Hee Min

Graphene oxide enables highly sequence specific nucleic acid detection by selectively removing the signal from a mismatched target/probe duplex.


2015 ◽  
Vol 44 (10) ◽  
pp. 1353-1355 ◽  
Author(s):  
Yusuke Kitamura ◽  
Takaaki Miyahata ◽  
Hirotaka Matsuura ◽  
Kazuto Hatakeyama ◽  
Takaaki Taniguchi ◽  
...  

Author(s):  
F. Thoma ◽  
TH. Koller

Under a variety of electron microscope specimen preparation techniques different forms of chromatin appearance can be distinguished: beads-on-a-string, a 100 Å nucleofilament, a 250 Å fiber and a compact 300 to 500 Å fiber.Using a standardized specimen preparation technique we wanted to find out whether there is any relation between these different forms of chromatin or not. We show that with increasing ionic strength a chromatin fiber consisting of a row of nucleo- somes progressively folds up into a solenoid-like structure with a diameter of about 300 Å.For the preparation of chromatin for electron microscopy the avoidance of stretching artifacts during adsorption to the carbon supports is of utmost importance. The samples are fixed with 0.1% glutaraldehyde at 4°C for at least 12 hrs. The material was usually examined between 24 and 48 hrs after the onset of fixation.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


Sign in / Sign up

Export Citation Format

Share Document