scholarly journals Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells

2019 ◽  
Vol 20 (4) ◽  
pp. 832 ◽  
Author(s):  
Roberta Scanferlato ◽  
Massimo Bortolotti ◽  
Anna Sansone ◽  
Chryssostomos Chatgilialoglu ◽  
Letizia Polito ◽  
...  

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.

Author(s):  
Roberta Scanferlato ◽  
Massimo Bortolotti ◽  
Anna Sansone ◽  
Chryssostomos Chatgilialoglu ◽  
Letizia Polito ◽  
...  

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional MUFA isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and evidence the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodeling was influenced by the type of fatty acid and positional isomer, with increase of 8cis-18:1, n-10 PUFA and decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in case of sapienic acid. EC50 of sapienic acid (232.3 μM at 96 hrs) was the highest found among the tested fatty acids, thus influencing cell viability that was only reduced at 25% at 300 μM, whereas palmitoleic acid induced cell death. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


1981 ◽  
Author(s):  
M L McKean ◽  
J B Smith ◽  
M J Silver

The fatty acid composition of cell membrane phospholipids does not remain constant after de novo biosynthesis, but undergoes continual remodelling. One of the major routes for remodelling probably includes the deacylation-reacylation steps of the Lands Pathway. This has been shown to be important for the incorporation of long chain, polyunsaturated fatty acids into phospholipids by liver and brain. An understanding of the mechanisms involved in these processes in platelets is especially important in light of the large stores of arachidonic acid (AA) in platelet phospholipids and the role of AA in hemostasis and thrombosis. Previous results from this laboratory have shown that the turnover of radioactive AA, 8,11,14-eicosatrienoic and 5,8,11,14,17-eicosapentaenoic acids in the phospholipids of resting platelets is more rapid than the turnover of radioactive C16 and C18 saturated and unsaturated fatty acids. However, little is known about how fatty acids, especially AA and its homologues, are incorporated into platelet phospholipids during de novo biosynthesis or how they are exchanged during remodelling.At least three enzymes are involved in the deacylation- reacylation of phospholipids: phospholipase A2; acyl CoA synthetase; and acyl CoA transferase. We have studied acyl CoA transferase and have found considerable activity in human platelet membranes. Experiments are in progress to determine the substrate specificity and other properties of this enzyme.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2890
Author(s):  
Silvia Cruz-Gil ◽  
Lara P. Fernández ◽  
Ruth Sánchez-Martínez ◽  
Marta Gómez de Cedrón ◽  
Ana Ramírez de Molina

Cancer cells commonly display metabolic fluctuations. Together with the Warburg effect and the increased glutaminolysis, alterations in lipid metabolism homeostasis have been recognized as a hallmark of cancer. Highly proliferative cancer cells upregulate de novo synthesis of fatty acids (FAs) which are required to support tumor progression by exerting multiple roles including structural cell membrane composition, regulators of the intracellular redox homeostasis, ATP synthesis, intracellular cell signaling molecules, and extracellular mediators of the tumor microenvironment. Epigenetic modifications have been shown to play a crucial role in human development, but also in the initiation and progression of complex diseases. The study of epigenetic processes could help to design new integral strategies for the prevention and treatment of metabolic disorders including cancer. Herein, we first describe the main altered intracellular fatty acid processes to support cancer initiation and progression. Next, we focus on the most important regulatory and non-coding RNAs (small noncoding RNA—sncRNAs—long non-coding RNAs—lncRNAs—and other regulatory RNAs) which may target the altered fatty acids pathway in cancer.


2019 ◽  
Vol 122 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Nikos Koundouros ◽  
George Poulogiannis

AbstractA common feature of cancer cells is their ability to rewire their metabolism to sustain the production of ATP and macromolecules needed for cell growth, division and survival. In particular, the importance of altered fatty acid metabolism in cancer has received renewed interest as, aside their principal role as structural components of the membrane matrix, they are important secondary messengers, and can also serve as fuel sources for energy production. In this review, we will examine the mechanisms through which cancer cells rewire their fatty acid metabolism with a focus on four main areas of research. (1) The role of de novo synthesis and exogenous uptake in the cellular pool of fatty acids. (2) The mechanisms through which molecular heterogeneity and oncogenic signal transduction pathways, such as PI3K–AKT–mTOR signalling, regulate fatty acid metabolism. (3) The role of fatty acids as essential mediators of cancer progression and metastasis, through remodelling of the tumour microenvironment. (4) Therapeutic strategies and considerations for successfully targeting fatty acid metabolism in cancer. Further research focusing on the complex interplay between oncogenic signalling and dysregulated fatty acid metabolism holds great promise to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.


2021 ◽  
Vol 9 (5) ◽  
Author(s):  
Elizabeth Kolar ◽  
Xiaohai Shi ◽  
Emily Clay ◽  
Ann Moser ◽  
Bachchu Lal ◽  
...  

Gliomas are the largest category of primary malignant brain tumors in adults, and glioblastomas account for nearly half of malignant gliomas. Glioblastomas are notoriously aggressive and drug-resistant, with a very poor 5 year survival rate of about 5%. New approaches to treatment are thus urgently needed. We previously identified an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3), as a potential therapeutic target in glioblastoma. Using the glioblastoma cell line U87MG, we created a cell line with genomic deletion of ACSVL3 (U87-KO) and investigated potential mechanisms to explain how this enzyme supports the malignant properties of glioblastoma cells. Compared to U87MG cells, U87-KO cells grew slower and assumed a more normal morphology. They produced fewer, and far smaller, subcutaneous xenografts in nude mice. Acyl-CoA synthetases, including ACSVL3, convert fatty acids to their acyl-CoA derivatives, allowing participation in diverse downstream lipid pathways. We examined the effect of ACSVL3 depletion on several such pathways. Fatty acid degradation for energy production was not affected in U87-KO cells. Fatty acid synthesis, and incorporation of de novo synthesized fatty acids into membrane phospholipids needed for rapid tumor cell growth, was not significantly affected by lack of ACSVL3. In contrast, U87-KO cells exhibited evidence of altered sphingolipid metabolism. Levels of ceramides containing 18-22 carbon fatty acids were significantly lower in U87-KO cells. This paralleled the fatty acid substrate specificity profile of ACSVL3. The rate of incorporation of stearate, an 18-carbon saturated fatty acid, into ceramides was reduced in U87-KO cells, and proteomics revealed lower abundance of ceramide synthesis pathway enzymes. Sphingolipids, including gangliosides, are functional constituents of lipid rafts, membrane microdomains thought to be organizing centers for receptor-mediated signaling. Both raft morphology and ganglioside composition were altered by deficiency of ACSVL3. Finally, levels of sphingosine-1-phosphate, a sphingolipid signaling molecule, were reduced in U87-KO cells. We conclude that ACSVL3 supports the malignant behavior of U87MG cells, at least in part, by altering cellular sphingolipid metabolism.


2020 ◽  
Vol 19 (18) ◽  
pp. 2223-2230 ◽  
Author(s):  
Poonam Verma ◽  
Sanjukta Naik ◽  
Pranati Nanda ◽  
Silvi Banerjee ◽  
Satyanarayan Naik ◽  
...  

Background: Coconut oil is an edible oil obtained from fresh, mature coconut kernels. Few studies have reported the anticancer role of coconut oil. The fatty acid component of coconut oil directly targets the liver by portal circulation and as chylomicron via lymph. However, the anti-cancer activity of coconut oil against liver cancer cells and oral cancer cells is yet to be tested. The active component of coconut oil, that is responsible for the anticancer activity is not well understood. In this study, three different coconut oils, Virgin Coconut Oil (VCO), Processed Coconut Oil (PCO) and Fractionated Coconut Oil (FCO), were used. Objective: Based on previous studies, it can be hypothesized that fatty acids in coconut oil may have anticancer potential and may trigger cell death in cancer cell lines. Methods: Each cell line was treated with different concentrations of Virgin Coconut Oil (VCO), Processed Coconut Oil (PCO) and Fractionated Coconut Oil (FCO). The treated cells were assayed by MTT after 72 hr of incubation. The fatty acid composition of different coconut oils was analyzed by gas chromatography. Result: Different concentrations of coconut oils were used to treat the cells. Interestingly, the anticancer efficacy of VCO, PCO and FCO was not uniform, rather the efficacy varied from cell line to cell line. Only 20% VCO showed significant anticancer activity in HepG2 cells in comparison to 80% PCO against the KB cell line. Remarkably, 20% of PCO and 5% of FCO showed potential growth inhibition in the KB cell line as compared to 80% PCO in HepG2 cells. Moreover, there was a difference in the efficacy of VCO, PCO and FCO, which might be due to their fatty acid composition. Comparing the anticancer efficacy of VCO, PCO and FCO in this study helped to predict which class of fatty acids and which fatty acid might be associated with the anticancer activity of VCO. Conclusion: This study shows that VCO, PCO and FCO have anticancer efficacy and may be used for the treatment of cancer, especially liver and oral cancer.


1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheena Dass ◽  
Serena Shunmugam ◽  
Laurence Berry ◽  
Christophe-Sebastien Arnold ◽  
Nicholas J. Katris ◽  
...  

AbstractApicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast. The molecular and metabolic mechanisms allowing regulation and channeling of these fatty acid fluxes for intracellular parasite survival are currently unknown. Here, we identify an essential phosphatidic acid phosphatase in Toxoplasma gondii, TgLIPIN, as the central metabolic nexus responsible for controlled lipid synthesis sustaining parasite development. Lipidomics reveal that TgLIPIN controls the synthesis of diacylglycerol and levels of phosphatidic acid that regulates the fine balance of lipids between storage and membrane biogenesis. Using fluxomic approaches, we uncover the first parasite host-scavenged lipidome and show that TgLIPIN prevents parasite death by ‘lipotoxicity’ through effective channeling of host-scavenged fatty acids to storage triacylglycerols and membrane phospholipids.


1972 ◽  
Vol 50 (10) ◽  
pp. 1263-1267 ◽  
Author(s):  
K. R. Penner ◽  
J. S. Barlow

The fatty acid composition of newly emerged Ips paraconfusus Lanier shows no sexual dimorphism and is approximately as follows: C14:0, 0.5%; C16:0, 23.0%; C16:1, 6%; C18:0, 3%; C18:1, 55%; C18:2, 9%; C18:3, 2%. Both sexes, but particularly the female, use up fatty acids, particularly the monounsaturated acids, during reproduction. Isotope from 1-14C-acetate injected into newly emerged females appeared in all saturated and monounsaturated fatty acids within 30 min. There was evidence of de novo synthesis of C14:0 and C16:0, chain elongation of C16:0 to C18:0, and desaturation of C16:0 and C18:0 to yield C16:1 and C18:1 respectively.


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


Sign in / Sign up

Export Citation Format

Share Document