scholarly journals Non-Coding and Regulatory RNAs as Epigenetic Remodelers of Fatty Acid Homeostasis in Cancer

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2890
Author(s):  
Silvia Cruz-Gil ◽  
Lara P. Fernández ◽  
Ruth Sánchez-Martínez ◽  
Marta Gómez de Cedrón ◽  
Ana Ramírez de Molina

Cancer cells commonly display metabolic fluctuations. Together with the Warburg effect and the increased glutaminolysis, alterations in lipid metabolism homeostasis have been recognized as a hallmark of cancer. Highly proliferative cancer cells upregulate de novo synthesis of fatty acids (FAs) which are required to support tumor progression by exerting multiple roles including structural cell membrane composition, regulators of the intracellular redox homeostasis, ATP synthesis, intracellular cell signaling molecules, and extracellular mediators of the tumor microenvironment. Epigenetic modifications have been shown to play a crucial role in human development, but also in the initiation and progression of complex diseases. The study of epigenetic processes could help to design new integral strategies for the prevention and treatment of metabolic disorders including cancer. Herein, we first describe the main altered intracellular fatty acid processes to support cancer initiation and progression. Next, we focus on the most important regulatory and non-coding RNAs (small noncoding RNA—sncRNAs—long non-coding RNAs—lncRNAs—and other regulatory RNAs) which may target the altered fatty acids pathway in cancer.

2019 ◽  
Vol 20 (4) ◽  
pp. 832 ◽  
Author(s):  
Roberta Scanferlato ◽  
Massimo Bortolotti ◽  
Anna Sansone ◽  
Chryssostomos Chatgilialoglu ◽  
Letizia Polito ◽  
...  

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


2019 ◽  
Vol 122 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Nikos Koundouros ◽  
George Poulogiannis

AbstractA common feature of cancer cells is their ability to rewire their metabolism to sustain the production of ATP and macromolecules needed for cell growth, division and survival. In particular, the importance of altered fatty acid metabolism in cancer has received renewed interest as, aside their principal role as structural components of the membrane matrix, they are important secondary messengers, and can also serve as fuel sources for energy production. In this review, we will examine the mechanisms through which cancer cells rewire their fatty acid metabolism with a focus on four main areas of research. (1) The role of de novo synthesis and exogenous uptake in the cellular pool of fatty acids. (2) The mechanisms through which molecular heterogeneity and oncogenic signal transduction pathways, such as PI3K–AKT–mTOR signalling, regulate fatty acid metabolism. (3) The role of fatty acids as essential mediators of cancer progression and metastasis, through remodelling of the tumour microenvironment. (4) Therapeutic strategies and considerations for successfully targeting fatty acid metabolism in cancer. Further research focusing on the complex interplay between oncogenic signalling and dysregulated fatty acid metabolism holds great promise to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.


Author(s):  
Roberta Scanferlato ◽  
Massimo Bortolotti ◽  
Anna Sansone ◽  
Chryssostomos Chatgilialoglu ◽  
Letizia Polito ◽  
...  

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional MUFA isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and evidence the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodeling was influenced by the type of fatty acid and positional isomer, with increase of 8cis-18:1, n-10 PUFA and decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in case of sapienic acid. EC50 of sapienic acid (232.3 μM at 96 hrs) was the highest found among the tested fatty acids, thus influencing cell viability that was only reduced at 25% at 300 μM, whereas palmitoleic acid induced cell death. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1631-1631
Author(s):  
Ismael J. Samudio ◽  
Michael Fiegl ◽  
Marina Konopleva ◽  
Kumar Kaluarachchi ◽  
John S. McMurray ◽  
...  

Abstract More than half a century ago, Otto Warburg proposed that the origin of cancer cells was closely linked to a permanent respiratory defect that bypassed the Pasteur effect, i.e. the inhibition of anaerobic fermentation by oxygen. However, permanent and transmissible defects in the respiratory capacity of cancer cells that could broadly support Warburg’s hypothesis have not been identified. Notably, we have recently demonstrated that mitochondrial uncoupling – the abrogation of ATP synthesis in response to mitochondrial membrane potential – can promote the Warburg effect in leukemia cells, and may contribute to chemoresistance, via in part, the expression of the highly conserved thermogenic protein UCP2. Here we demonstrate that mitochondrial uncoupling in leukemia cells is supported by the oxidation of fatty acids, and provide evidence that etomoxir (EX) or ranolazine (RAN), pharmacological inhibitors of fatty acid oxidation utilized for the treatment of heart failure, sensitize leukemia cell lines and primary samples to apoptosis induced by the BH3 mimetic ABT-737 and the MDM-2 inhibitor Nutlin 3a. EX and RAN, but not 2-deoxyglucose (2DG), markedly inhibited oxygen consumption in leukemia cell lines and primary samples. In contrast, 2DG, but not EX or RAN, potently depleted ATP levels, suggesting that the oxidation of fatty acids is uncoupled from ATP synthesis – and conversely, the synthesis of ATP primarily depends on the non-oxidative, glycolytic metabolism of glucose. It is noteworthy that albeit EX and RAN inhibited the growth of p53-wild type and -mutant leukemia cells, neither agent induced marked apoptosis. Nonetheless, a pronounced induction of the proapoptotic BH3-only proteins Noxa and Bim was observed regardless of p53 status, suggesting a potential mechanism by which these agents enhance apoptosis by ABT-737. In addition, EX and RAN abrogated the chemoprotective effects of bone marrow-derived stromal feeder layers, and EX provided a survival advantage in combination with ABT-737 in a murine model of leukemia suggesting that inhibition of mitochondrial fatty acid oxidation represents a novel therapeutic strategy for the treatment of leukemia. Intriguingly, C13-NMR analysis, H3–oleate oxidation, and oxymetry experiments revealed that leukemia cells do not oxidize exogenous fatty acids, but rather depend on glucose and glutamine-supported de novo synthesis of fatty acids to maintain mitochondrial function. Accordingly, depletion of glutamine, inhibition of fatty acid synthesis, or reduced pentose phosphate shunt-derived NADPH significantly decreased oxygen consumption and potentiated ABT-737 induced apoptosis. The above results support the hypothesis that glutamine and glucose-dependent anaplerotic reactions sustain fatty acid metabolism and survival of leukemia cells. Our results suggest that the dependence of cancer cells on glycolysis for energy generation indicates a metabolic shift to the ATP-uncoupled oxidation of non-glucose substrates, and most importantly, support the clinical investigation of fatty acid oxidation and synthesis inhibitors as a therapeutic strategy in hematological malignancies.


2020 ◽  
Vol 19 (18) ◽  
pp. 2223-2230 ◽  
Author(s):  
Poonam Verma ◽  
Sanjukta Naik ◽  
Pranati Nanda ◽  
Silvi Banerjee ◽  
Satyanarayan Naik ◽  
...  

Background: Coconut oil is an edible oil obtained from fresh, mature coconut kernels. Few studies have reported the anticancer role of coconut oil. The fatty acid component of coconut oil directly targets the liver by portal circulation and as chylomicron via lymph. However, the anti-cancer activity of coconut oil against liver cancer cells and oral cancer cells is yet to be tested. The active component of coconut oil, that is responsible for the anticancer activity is not well understood. In this study, three different coconut oils, Virgin Coconut Oil (VCO), Processed Coconut Oil (PCO) and Fractionated Coconut Oil (FCO), were used. Objective: Based on previous studies, it can be hypothesized that fatty acids in coconut oil may have anticancer potential and may trigger cell death in cancer cell lines. Methods: Each cell line was treated with different concentrations of Virgin Coconut Oil (VCO), Processed Coconut Oil (PCO) and Fractionated Coconut Oil (FCO). The treated cells were assayed by MTT after 72 hr of incubation. The fatty acid composition of different coconut oils was analyzed by gas chromatography. Result: Different concentrations of coconut oils were used to treat the cells. Interestingly, the anticancer efficacy of VCO, PCO and FCO was not uniform, rather the efficacy varied from cell line to cell line. Only 20% VCO showed significant anticancer activity in HepG2 cells in comparison to 80% PCO against the KB cell line. Remarkably, 20% of PCO and 5% of FCO showed potential growth inhibition in the KB cell line as compared to 80% PCO in HepG2 cells. Moreover, there was a difference in the efficacy of VCO, PCO and FCO, which might be due to their fatty acid composition. Comparing the anticancer efficacy of VCO, PCO and FCO in this study helped to predict which class of fatty acids and which fatty acid might be associated with the anticancer activity of VCO. Conclusion: This study shows that VCO, PCO and FCO have anticancer efficacy and may be used for the treatment of cancer, especially liver and oral cancer.


1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


1972 ◽  
Vol 50 (10) ◽  
pp. 1263-1267 ◽  
Author(s):  
K. R. Penner ◽  
J. S. Barlow

The fatty acid composition of newly emerged Ips paraconfusus Lanier shows no sexual dimorphism and is approximately as follows: C14:0, 0.5%; C16:0, 23.0%; C16:1, 6%; C18:0, 3%; C18:1, 55%; C18:2, 9%; C18:3, 2%. Both sexes, but particularly the female, use up fatty acids, particularly the monounsaturated acids, during reproduction. Isotope from 1-14C-acetate injected into newly emerged females appeared in all saturated and monounsaturated fatty acids within 30 min. There was evidence of de novo synthesis of C14:0 and C16:0, chain elongation of C16:0 to C18:0, and desaturation of C16:0 and C18:0 to yield C16:1 and C18:1 respectively.


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


2005 ◽  
Vol 71 (4) ◽  
pp. 1915-1922 ◽  
Author(s):  
Claus Härtig ◽  
Norbert Loffhagen ◽  
Hauke Harms

ABSTRACT Fatty acid compositions in growing and resting cells of several strains of Pseudomonas putida (P8, NCTC 10936, and KT 2440) were studied, with a focus on alterations of the saturation degree, cis-trans isomerization, and cyclopropane formation. The fatty acid compositions of the strains were very similar under comparable growth conditions, but surprisingly, and contrary to earlier reports, trans fatty acids were not found in either exponentially growing cells or stationary-phase cells. During the transition from growth to the starvation state, cyclopropane fatty acids were preferentially formed, an increase in the saturation degree of fatty acids was observed, and larger amounts of hydroxy fatty acids were detected. A lowered saturation degree and concomitant higher membrane fluidity seemed to be optimal for substrate uptake and growth. The incubation of cells under nongrowth conditions rapidly led to the formation of trans fatty acids. We show that harvesting and sample preparation for analysis could provoke the enzyme-catalyzed formation of trans fatty acids. Freeze-thawing of resting cells and increased temperatures accelerated the formation of trans fatty acids. We demonstrate that cis-trans isomerization only occurred in cells that were subjected to an abrupt disturbance without having the possibility of adapting to the changed conditions by the de novo synthesis of fatty acids. The cis-trans isomerization reaction was in competition with the cis-to-cyclopropane fatty acid conversion. The potential for the formation of trans fatty acids depended on the cyclopropane content that was already present.


2020 ◽  
Author(s):  
Alejandro Schcolnik‑Cabrera ◽  
Guadalupe Dominguez‑G�mez ◽  
Alma Ch�vez‑Blanco ◽  
Marisol Ram�rez‑Yautentzi ◽  
Roc�o Morales‑B�rcenas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document