scholarly journals Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis

2019 ◽  
Vol 20 (7) ◽  
pp. 1687 ◽  
Author(s):  
Denghui Zhu ◽  
Rong Huang ◽  
Peipei Fu ◽  
Liangming Chen ◽  
Lifei Luo ◽  
...  

Basic leucine zipper transcription factor ATF-like (BATF)-3, belonging to activator protein 1 (AP-1) superfamily transcription factors, is essential for homeostatic development of CD8α+ classical dendritic cells activating CD8 T-cell responses to intracellular pathogens. In this study, the characteristics and cDNA cloning of the CiBATF3 molecule were described in grass carp (Ctenopharyngodon idella). CiBATF3 had abundant expression in immune-related organizations, including liver, spleen and gill, and grass carp reovirus (GCRV) infection had significantly changed its expression level. After Ctenopharyngodon idella kidney (CIK) cells were challenged with pathogen-associated molecular patterns (PAMPs), polyinosinic:polycytidylic acid (poly(I:C)) stimulation induced higher mRNA levels of CiBATF3 than that of lipopolysaccharide (LPS). Subcellular localization showed that CiBATF3-GFP was entirely distributed throughout cells and nuclear translocation of CiBATF3 was found after poly(I:C) treatment. Additionally, the interaction between CiBATF3 and interleukin 10 (IL-10) was proven by bimolecular fluorescence complementation (BiFC) system. The small interfering RNA (siRNA)-mediated CiBATF3 silencing showed that the mRNA of CiBATF3 and its downstream genes were down-regulated in vitro and in vivo. CiBATF3 played a negative regulatory role in the transcriptional activities of AP-1 and NF-κB reporter gene. In summary, the results may provide valuable information on fundamental functional mechanisms of CiBATF3.

2017 ◽  
Vol 8 (3) ◽  
pp. 1184-1194 ◽  
Author(s):  
Kaining Han ◽  
Ye Yao ◽  
Shiyuan Dong ◽  
Sun Jin ◽  
Hang Xiao ◽  
...  

Glycation greatly increased the anti-digestibility of myofibrillar proteins derived from grass carp, and affected the production of SCFAs and the microbial community structures inin vitrofecal fermentation.


2020 ◽  
Vol 21 (21) ◽  
pp. 8228
Author(s):  
Mei-Qin Zhuo ◽  
Wu-Hong Lv ◽  
Yi-Huan Xu ◽  
Zhi Luo

It is important to explore the regulatory mechanism of phosphorus homeostasis in fish, which help avoid the risk of P toxicity and prevent P pollution in aquatic environment. The present study obtained the full-length cDNA sequences and the promoters of three SLC20 members (slc20a1a, slc20a1b and slc20a2) from grass carp Ctenopharyngodon idella, and explored their responses to inorganic phosphorus (Pi). Grass carp SLC20s proteins possessed conservative domains and amino acid sites relevant with phosphorus transport. The mRNAs of three slc20s appeared in the nine tissues, but their expression levels were tissue-dependent. The binding sites of three transcription factors (SREBP1, NRF2 and VDR) were predicted on the slc20s promoters. The mutation and EMSA analysis indicated that: (1) SREBP1 binding site (−783/−771 bp) negatively but VDR (−260/−253 bp) binding site positively regulated the activities of slc20a1a promoter; (2) SREBP1 (−1187/−1178 bp), NRF2 (−572/−561 bp) and VDR(615/−609 bp) binding sites positively regulated the activities of slc20a1b promoter; (3) SREBP1 (−987/−977 bp), NRF2 (−1469/−1459 bp) and VDR (−1124/−1117 bp) binding sites positively regulated the activities of the slc20a2 promoter. Moreover, Pi incubation significantly reduced the activities of three slc20s promoters, and Pi-induced transcriptional inactivation of slc20s promoters abolished after the mutation of the VDR element but not SREBP1 and NRF2 elements. Pi incubation down-regulated the mRNA levels of three slc20s. For the first time, our study elucidated the transcriptional regulatory mechanisms of SLC20s and their responses to Pi, which offered new insights into the Pi homeostatic regulation and provided the basis for reducing phosphorus discharge into the waters.


Sign in / Sign up

Export Citation Format

Share Document