scholarly journals Targeting Apolipoprotein E for Alzheimer’s Disease: An Industry Perspective

2019 ◽  
Vol 20 (9) ◽  
pp. 2161 ◽  
Author(s):  
Georgette L. Suidan ◽  
Gayathri Ramaswamy

Apolipoprotein E (apoE), a key lipid transport protein in the brain, is predominantly produced by astrocytes. Astrocytes are the most numerous cell type in the brain and are the main support network for neurons. They play a critical role in the synthesis and delivery of cholesterol in the brain. Humans have three common apoE isoforms, apoE2, apoE3 and apoE4, that show a strong genotype effect on the risk and age of onset for sporadic and late onset forms of Alzheimer’s disease (AD). Carriers of an ε4 allele have an increased risk of developing AD, while those with an ε2 allele are protected. Investigations into the contribution of apoE to the development of AD has yielded conflicting results and there is still much speculation about the role of this protein in disease. Here, we review the opposing hypotheses currently described in the literature and the approaches that have been considered for targeting apoE as a novel therapeutic strategy for AD. Additionally, we provide our perspective on the rationale for targeting apoE and the challenges that arise with respect to “drug-ability” of this target.

1995 ◽  
Vol 167 (4) ◽  
pp. 533-536 ◽  
Author(s):  
Jennie Norrman ◽  
Anthony J. Brookes ◽  
Celia Yates ◽  
David St Clair

BackgroundThe apolipoprotein E (ApoE) ∊4 allele is associated with an increased risk of senile and probably presenile Alzheimer's disease. It is not yet clear whether the ∊4 allele also influences the duration/rate of progress of illness and the severity of the dementia.MethodWe have retrospectively examined a series of ApoE genotyped presenile and senile autopsy cases of Alzheimer's disease (AD) for length of illness and severity of pathology.ResultsWe find no evidence that ApoE genotype affects the rate of progress of AD, but the degree of pathology at death may be increased.ConclusionIt appears that the rate of progress of AD as a whole is independent of the ApoE genotype.


1994 ◽  
Vol 174 (2) ◽  
pp. 222-224 ◽  
Author(s):  
Henry Houlden ◽  
Richard Crook ◽  
John Hardy ◽  
Penelope Roques ◽  
John Collinge ◽  
...  

2020 ◽  
pp. 1-7
Author(s):  
Raymond R. Romano ◽  
Michael A. Carter ◽  
Mary S. Dietrich ◽  
Ronald L. Cowan ◽  
Stephen P. Bruehl ◽  
...  

Background: This study evaluated whether the apolipoprotein ɛ4 (APOE4) allele, a genetic marker associated with increased risk of developing late-onset Alzheimer’s disease (AD), was associated with differences in evoked pain responsiveness in cognitively healthy subjects. Objective: The aim was to determine whether individuals at increased risk of late-onset AD based on APOE allele genotype differ phenotypically in their response to experimentally-induced painful stimuli compared to those who do not have at least one copy of the ɛ4 allele. Methods: Forty-nine cognitively healthy subjects aged 30–89 years old with the APOE4 allele (n = 12) and without (n = 37) were assessed for group differences in pain thresholds and affective (unpleasantness) responses to experimentally-induced thermal pain stimuli. Results: Statistically significant main effects of APOE4 status were observed for both the temperature at which three different pain intensity percepts were reached (p = 0.040) and the level of unpleasantness associated with each (p = 0.014). APOE4 positive participants displayed lower overall pain sensitivity than those who were APOE4 negative and also greater overall levels of pain unpleasantness regardless of intensity level. Conclusion: Cognitively healthy APOE4 carriers at increased risk of late-onset AD demonstrated reduced thermal pain sensitivity but greater unpleasantness to thermal pain stimuli relative to individuals at lower risk of late-onset AD. These results suggest that altered evoked pain perception could potentially be used as a phenotypic biomarker of late-onset AD risk prior to disease onset. Additional studies of this issue may be warranted.


2010 ◽  
Vol 25 (5) ◽  
pp. 511-518 ◽  
Author(s):  
Dylan G. Harwood ◽  
Ari Kalechstein ◽  
Warren W. Barker ◽  
Silvia Strauman ◽  
Peter St. George-Hyslop ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
David Vogrinc ◽  
Katja Goričar ◽  
Vita Dolžan

Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yanan Sun ◽  
Cao Ma ◽  
Hui Sun ◽  
Huan Wang ◽  
Wei Peng ◽  
...  

As a chronic metabolic disease, diabetes mellitus (DM) is broadly characterized by elevated levels of blood glucose. Novel epidemiological studies demonstrate that some diabetic patients have an increased risk of developing dementia compared with healthy individuals. Alzheimer’s disease (AD) is the most frequent cause of dementia and leads to major progressive deficits in memory and cognitive function. Multiple studies have identified an increased risk for AD in some diabetic populations, but it is still unclear which diabetic patients will develop dementia and which biological characteristics can predict cognitive decline. Although few mechanistic metabolic studies have shown clear pathophysiological links between DM and AD, there are several plausible ways this may occur. Since AD has many characteristics in common with impaired insulin signaling pathways, AD can be regarded as a metabolic disease. We conclude from the published literature that the body’s diabetic status under certain circumstances such as metabolic abnormalities can increase the incidence of AD by affecting glucose transport to the brain and reducing glucose metabolism. Furthermore, due to its plentiful lipid content and high energy requirement, the brain’s metabolism places great demands on mitochondria. Thus, the brain may be more susceptible to oxidative damage than the rest of the body. Emerging evidence suggests that both oxidative stress and mitochondrial dysfunction are related to amyloid-β (Aβ) pathology. Protein changes in the unfolded protein response or endoplasmic reticulum stress can regulate Aβ production and are closely associated with tau protein pathology. Altogether, metabolic disorders including glucose/lipid metabolism, oxidative stress, mitochondrial dysfunction, and protein changes caused by DM are associated with an impaired insulin signal pathway. These metabolic factors could increase the prevalence of AD in diabetic patients via the promotion of Aβ pathology.


2019 ◽  
Vol 9 (10) ◽  
pp. 262 ◽  
Author(s):  
Hayden

Type 2 diabetes mellitus (T2DM) and late-onset Alzheimer’s disease–dementia (LOAD) are increasing in global prevalence and current predictions indicate they will only increase over the coming decades. These increases may be a result of the concurrent increases of obesity and aging. T2DM is associated with cognitive impairments and metabolic factors, which increase the cellular vulnerability to develop an increased risk of age-related LOAD. This review addresses possible mechanisms due to obesity, aging, multiple intersections between T2DM and LOAD and mechanisms for the continuum of progression. Multiple ultrastructural images in female diabetic db/db models are utilized to demonstrate marked cellular remodeling changes of mural and glia cells and provide for the discussion of functional changes in T2DM. Throughout this review multiple endeavors to demonstrate how T2DM increases the vulnerability of the brain’s neurovascular unit (NVU), neuroglia and neurons are presented. Five major intersecting links are considered: i. Aging (chronic age-related diseases); ii. metabolic (hyperglycemia advanced glycation end products and its receptor (AGE/RAGE) interactions and hyperinsulinemia-insulin resistance (a linking linchpin); iii. oxidative stress (reactive oxygen–nitrogen species); iv. inflammation (peripheral macrophage and central brain microglia); v. vascular (macrovascular accelerated atherosclerosis—vascular stiffening and microvascular NVU/neuroglial remodeling) with resulting impaired cerebral blood flow.


2012 ◽  
Vol 15 (3) ◽  
pp. 286-295 ◽  
Author(s):  
Derrek P. Hibar ◽  
Neda Jahanshad ◽  
Jason L. Stein ◽  
Omid Kohannim ◽  
Arthur W. Toga ◽  
...  

The development of late-onset Alzheimer's disease (LOAD) is under strong genetic control and there is great interest in the genetic variants that confer increased risk. The Alzheimer's disease risk gene, growth factor receptor bound protein 2-associated protein (GAB2), has been shown to provide a 1.27–1.51 increased odds of developing LOAD for rs7101429 major allele carriers, in case-control analysis. GAB2 is expressed across the brain throughout life, and its role in LOAD pathology is well understood. Recent studies have begun to examine the effect of genetic variation in the GAB2 gene on differences in the brain. However, the effect of GAB2 on the young adult brain has yet to be considered. Here we found a significant association between the GAB2 gene and morphological brain differences in 755 young adult twins (469 females) (M = 23.1, SD = 3.1 years), using a gene-based test with principal components regression (PCReg). Detectable differences in brain morphology are therefore associated with variation in the GAB2 gene, even in young adults, long before the typical age of onset of Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document