scholarly journals Genome-Wide Analysis of Coding and Long Non-Coding RNAs Involved in Cuticular Wax Biosynthesis in Cabbage (Brassica oleracea L. var. capitata)

2019 ◽  
Vol 20 (11) ◽  
pp. 2820 ◽  
Author(s):  
Xiaowei Zhu ◽  
Xiang Tai ◽  
Yunying Ren ◽  
Jinxiu Chen ◽  
Tianyue Bo

Cuticular wax is a mixture of very long chain fatty acids (VLCFAs) and their derivatives, which determines vital roles for plant growth. In cabbage, the cuticular wax content of leaf blades is an important trait influencing morphological features of the head. Understanding the molecular basis of cuticular wax biosynthesis can help breeders develop high quality cabbage varieties. Here, we characterize a cabbage non-wax glossy (nwgl) plant, which exhibits glossy green phenotype. Cryo-scanning electron microscope analysis showed abnormal wax crystals on the leaf surfaces of nwgl plants. Cuticular wax composition analyzed by GC-MS displayed severely decreased in total wax loads, and individual wax components in nwgl leaves. We delimited the NWGL locus into a 99-kb interval between the at004 marker and the end of chromosome C08 through fine mapping. By high-throughput RNA sequencing, we identified 1247 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs in nwgl leaves relative to the wild-type. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the DEGs and cis-regulated target genes for differentially expressed lncRNAs were significantly enriched in wax and lipid biosynthetic or metabolic processes. Our results provide the novel foundation to explore the complex molecular basis of cuticular wax biosynthesis.

2021 ◽  
Vol 23 (1) ◽  
pp. 382
Author(s):  
Tingting Zhu ◽  
Han Liu ◽  
Li Su ◽  
Ali Dawood ◽  
Changmin Hu ◽  
...  

Although Mycobacterium tuberculosis (MTB) has existed for thousands of years, its immune escape mechanism remains obscure. Increasing evidence signifies that microRNAs (miRNAs) play pivotal roles in the progression of tuberculosis (TB). RNA sequencing was used to sequence miRNAs in human acute monocytic leukemia cells (THP-1) infected by the virulent MTB-1458 strain and the avirulent vaccine strain Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Sets of differentially expressed miRNAs (DE-miRNAs) between MTB-1458/BCG-infected groups and uninfected groups were identified, among which 18 were differentially expressed only in the MTB-1458-infected THP-1 group. Then, 13 transcription factors (TFs) and 81 target genes of these 18 DE-miRNAs were matched. Gene Ontology classification as well as Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the candidate targets were predominantly involved in apoptotic-associated and interferon-γ-mediated signaling pathways. A TF-miRNA-mRNA interaction network was constructed to analyze the relationships among these 18 DE-miRNAs and their targets and TFs, as well as display the hub miRNAs, TFs, and target genes. Considering the degrees from network analysis and the reported functions, this study focused on the BHLHE40-miR-378d-BHLHE40 regulation axis and confirmed that BHLHE40 was a target of miR-378d. This cross-talk among DE-miRNAs, mRNAs, and TFs might be an important feature in TB, and the findings merited further study and provided new insights into immune defense and evasion underlying host-pathogen interactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Hao Zhang ◽  
Xi Chen ◽  
Yufeng Yuan

Purpose. To identify pivotal differentially expressed miRNAs and genes and construct their regulatory network in hepatocellular carcinoma. Methods. mRNA (GSE101728) and microRNA (GSE108724) microarray datasets were obtained from the NCBI Gene Expression Omnibus (GEO) database. Then, we identified the differentially expressed miRNAs and mRNAs. Sequentially, transcription factor enrichment and gene ontology (GO) enrichment analysis for miRNA were performed. Target genes of these differential miRNAs were obtained using packages in R language ( R package multiMiR). After that, downregulated miRNAs were matched with target mRNAs which were upregulated, while upregulated miRNAs were paired with downregulated target mRNA using scripts written in Perl. An miRNA-mRNA network was constructed and visualized in Cytoscape software. For miRNAs in the network, survival analysis was performed. And for genes in the network, we did gene ontology (GO) and KEGG pathway enrichment analysis. Results. A total of 35 miRNAs and 295 mRNAs were involved in the network. These differential genes were enriched in positive regulation of cell-cell adhesion, positive regulation of leukocyte cell-cell adhesion, and so on. Eight differentially expressed miRNAs were found to be associated with the OS of patients with HCC. Among which, miR-425 and miR-324 were upregulated while the other six, including miR-99a, miR-100, miR-125b, miR-145, miR-150, and miR-338, were downregulated. Conclusion. In conclusion, these results can provide a potential research direction for further studies about the mechanisms of how miRNA affects malignant behavior in hepatocellular carcinoma.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 201 ◽  
Author(s):  
Hui Ma ◽  
Aixin Ni ◽  
Pingzhuang Ge ◽  
Yunlei Li ◽  
Lei Shi ◽  
...  

Pigeons have the ability to produce milk and feed their squabs. The genetic mechanisms underlying milk production in the crops of ’lactating’ pigeons are not fully understood. In this study, RNA sequencing was employed to profile the transcriptome of lncRNA and mRNA in lactating and non-‘lactating’ pigeon crops. We identified 7066 known and 17,085 novel lncRNAs. Of these lncRNAs, 6166 were differentially expressed. Among the 15,138 mRNAs detected, 6483 were differentially expressed, including many predominant genes with known functions in the milk production of mammals. A GO annotation analysis revealed that these genes were significantly enriched in 55, 65, and 30 pathways of biological processes, cellular components, and molecular functions, respectively. A KEGG pathway enrichment analysis revealed that 12 pathways (involving 544 genes), including the biosynthesis of amino acids, the propanoate metabolism, the carbon metabolism and the cell cycle, were significantly enriched. The results provide fundamental evidence for the better understanding of lncRNAs’ and differentially expressed genes’ (DEGs) regulatory role in the molecular pathways governing milk production in pigeon crops. To our knowledge, this is the first genome-wide investigation of the lncRNAs in pigeon crop associated with milk production. This study provided valuable resources for differentially expressed lncRNAs and mRNAs, improving our understanding of the molecular mechanism of pigeon milk production.


2018 ◽  
Vol 50 (2) ◽  
pp. 552-568 ◽  
Author(s):  
Xuehui Yang ◽  
Hongmei Chen ◽  
Yan Chen ◽  
Yochai Birnbaum ◽  
Rongbi Liang ◽  
...  

Background/Aims: Circulating miRNAs could serve as biomarkers for diagnosis or prognosis of heart diseases and cerebrovascular diseases. Dexmedetomidine has protective effects in various organs. The effects of dexmedetomidine on circulating miRNAs remain unknown. Here, we investigated differentially expressed miRNA and to predict the target genes of the miRNA in patients receiving dexmedetomidine. Methods: The expression levels of circulating miRNAs of 3 patients were determined through high through-put miRNA sequencing technology. Target genes of the identified differentially expressed miRNAs were predicted using TargetScan 7.1 and miRDB v.5. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to conduct functional annotation and pathway enrichment analysis of target genes respectively. Results: Twelve differentially expressed miRNAs were identified. Five miRNAs were upregulated (hsa-miR-4508, hsa-miR-novel-chr8_87373, hsa-miR-30a-3p, hsa-miR-novel-chr16_26099, hsa-miR-4306) and seven miRNAs (hsa-miR-744-5p, hsa-miR-320a, hsa-miR-novel-chr9_90035, hsa-miR-101-3p, hsa-miR-150-5p, hsa-miR-342-3p, and hsa-miR-140-3p) were downregulated after administration of dexmedetomidine in the subjects. The target genes and pathways related to the differentially expressed miRNAs were predicted and analyzed. Conclusion: The differentially expressed miRNAs may be involved in the mechanisms of action of dexmedetomidine. Specific miRNAs, such as hsa-miR-101-3p, hsa-miR-150-5p and hsa-miR-140-3p, are new potential targets for further functional studies of dexmedetomidine.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Emi Dika ◽  
Elisabetta Broseghini ◽  
Elisa Porcellini ◽  
Martina Lambertini ◽  
Mattia Riefolo ◽  
...  

AbstractMalignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial–mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|−2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.


2021 ◽  
Vol 22 (10) ◽  
pp. 5058
Author(s):  
Dóra Géczi ◽  
Bálint Nagy ◽  
Melinda Szilágyi ◽  
András Penyige ◽  
Álmos Klekner ◽  
...  

(1) Background: Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis. Treatment options are limited, clinicians lack efficient prognostic and predictive markers. Circulating miRNAs—besides being important regulators of cancer development—may have potential as diagnostic biomarkers of GBM. (2) Methods: In this study, profiling of 798 human miRNAs was performed on blood plasma samples from 6 healthy individuals and 6 patients with GBM, using a NanoString nCounter Analysis System. To validate our results, five miRNAs (hsa-miR-433-3p, hsa-miR-362-3p, hsa-miR-195-5p, hsa-miR-133a-3p, and hsa-miR-29a-3p) were randomly chosen for RT-qPCR detection. (3) Results: In all, 53 miRNAs were significantly differentially expressed in plasma samples of GBM patients when data were filtered for FC 1 and FDR 0.1. Target genes of the top 39 differentially expressed miRNAs were identified, and we carried out functional annotation and pathway enrichment analysis of target genes via GO and KEGG-based tools. General and cortex-specific protein–protein interaction networks were constructed from the target genes of top miRNAs to assess their functional connections. (4) Conclusions: We demonstrated that plasma microRNA profiles are promising diagnostic and prognostic molecular biomarkers that may find an actual application in the clinical practice of GBM, although more studies are needed to validate our results.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 937-937
Author(s):  
Dolores Corella ◽  
José Sorlí ◽  
Eva Asensio ◽  
Rocío Barragán ◽  
Olga Portolés ◽  
...  

Abstract Objectives Diet regulates gene expression and methylation profiles by several mechanisms. However, studies analyzing the simultaneous effect of specific foods on gene-expression and DNA methylation at the genome-wide level are very scarce. Therefore our aims were: To study the short-term transcriptomics and epigenomcis effects at the genome-wide level of the Iberian ham intake compared with orange intake in the same subjects. Methods We carried out a cross-over randomized trial (registered at ISRCTN17906849) in 33 healhty volunteers (aged 18–50 years and 50% females) of European ancestry. After 12h fasting, participants were randomly allocated to eat 67.5 g of Iberian ham (100% pure iberian breed and 100% acorn fed) or 500 g of peeled oranges (Citrus reticulata) depening on the intervention group. After a washout period, subjects were crossed over to the alternate treatment arm. Blood samples were taken at 0-h and at 4-h to isolate DNA and RNA from leukocytes. A random sample of 16 participants was selected for omics analyses (gene expression with the. GeneChip Human Gene 2.0 ST Array, and the EPIC-Illumina array (850K) for methylation). Eight arrays (2 times and 2 treatments per 2 omics) were obtained for each participant. Differences in gene expression and methylation (4 h vs baseline) were analyzed for Iberian ham, oranges and combined. Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Results The top-ranked genes differentially expressed P < 1 × 10–5) after Iberian ham intake (4 h vs baseline) were PKBP5 and PICALM. Pantothenate and CoA biosyntesis and the JAK-STAT singaling pathways were the most significantly enriched (P < 5 × 10–7). After orange intake, the top-ranked differentially expressed genes (P < 5 × 10–6) were: SMAP2 and RHEB, the pathways being (P < 5 × 10–9): Cellular senescence and ABC transporters. We detected top-ranked methylated CpGs both for ham and oranges, resulting the Chemokine signaling pathway differentially methylated for oranges and in the Neurothrophine singaling pathway for Iberian ham intake. Comparative combined analysis revealed additional differences. Conclusions A short-term intake of Iberian ham or oranges results in differences in gene expression as well as in DNA-methylation. Funding Sources CIBEROBN-06/03/035, PROMETEO-17/2017 APOSTD/2019/136), P1–1B2013–54 and COGRUP/2016/06


Lupus ◽  
2020 ◽  
Vol 29 (8) ◽  
pp. 854-861
Author(s):  
Jianbo Song ◽  
Liqin Zhao ◽  
Yuanping Li

Objective Lupus nephritis (LN) is one of the serious complications of systemic lupus erythematosus. The aim of this study was to identify core genes and pathways involved in the pathogenesis of LN. Methods We screened differentially expressed genes (DEGs) in LN patients using mRNA expression profile data from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DEGs was performed utilizing the Database for annotation, Visualization and Integrated Discovery. Target genes with differentially expressed miRNAs (DEMIs) were predicted using the miRTarBase database, and the intersection between these target genes and DEGs was selected to be studied further. Results In total, 107 common DEGs (CDEGs) were identified from the Tub_LN group and Glom_LN group, and 66 DEMIs were identified. Fifty-three hub genes and two significant modules were identified from the protein–protein interaction (PPI) network, and a miRNA–mRNA network was constructed. The CDEGs, module genes in the PPI network and genes intersecting with the CDEGs and target genes of DEMIs were all associated with the PI3K-Akt signalling pathway. Conclusion In summary, this study reveals some crucial genes and pathways potentially involving in the pathogenesis of LN. These findings provide a new insight for the research and treatment of LN.


2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


Sign in / Sign up

Export Citation Format

Share Document