scholarly journals Lysates of a Probiotic, Lactobacillus rhamnosus, Can Improve Skin Barrier Function in a Reconstructed Human Epidermis Model

2019 ◽  
Vol 20 (17) ◽  
pp. 4289 ◽  
Author(s):  
Ye-On Jung ◽  
Haengdueng Jeong ◽  
Yejin Cho ◽  
Eun-Ok Lee ◽  
Hye-Won Jang ◽  
...  

The main function of the skin is to protect the body from the external environment. The barrier function of the skin is mainly provided by the stratum corneum, which consists of corneocytes bound with the corneodesmosomes and lamellar lipids. Skin barrier proteins like loricrin and filaggrin also contribute to the skin barrier function. In various skin diseases, skin barrier dysfunction is a common symptom, and skin irritants like detergents or surfactants could also perturb skin barrier function. Many efforts have been made to develop strategies to improve skin barrier function. Here, we investigated whether the microfluidized lysates of Lactobacillus rhamnosus (LR), one of the most widely used probiotic species for various health benefits, may improve the skin barrier function in a reconstructed human epidermis, Keraskin™. Application of LR lysate on Keraskin™ increased the expression of tight junction proteins; claudin 1 and occludin as determined by immunofluorescence analysis, and skin barrier proteins; loricrin and filaggrin as determined by immunohistochemistry and immunofluorescence analysis and qPCR. Also, the cytotoxicity of a skin irritant, sodium lauryl sulfate (SLS), was alleviated by the pretreatment of LR lysate. The skin barrier protective effects of LR lysate could be further demonstrated by the attenuation of SLS-enhanced dye-penetration. LR lysate also attenuated the destruction of desmosomes after SLS treatment. Collectively, we demonstrated that LR lysate has protective effects on the skin barrier, which could expand the utility of probiotics to skin-moisturization ingredients.

The Analyst ◽  
2021 ◽  
Author(s):  
Joudi bakar ◽  
Rime Michael-Jubeli ◽  
Rindala El Khoury ◽  
Sabrina Hamla ◽  
Ali ASSI ◽  
...  

Reconstructed human epidermis models are used as epidermis alternatives in skin researches. It is necessary to provide molecular and functional characterization in order to assess these models. Our aim is...


1993 ◽  
Vol 6 (2) ◽  
pp. 111-115 ◽  
Author(s):  
J.L. Lévêque ◽  
J. de Rigal ◽  
D. Saint-Léger ◽  
D. Billy

2021 ◽  
Vol 22 (2) ◽  
pp. 657
Author(s):  
Jee-Hyun Hwang ◽  
Haengdueng Jeong ◽  
Nahyun Lee ◽  
Sumin Hur ◽  
Nakyum Lee ◽  
...  

Since the European Union (EU) announced their animal testing ban in 2013, all animal experiments related to cosmetics have been prohibited, creating a demand for alternatives to animal experiments for skin studies. Here, we investigated whether an ex vivo live porcine skin model can be employed to study the safety and skin barrier-improving effects of hydroxyacids widely used in cosmetics for keratolytic peels. Glycolic acid (1–10%), salicylic acid (0.2–2%), and lactobionic acid (1.2–12%) were used as representative substances for α-hydroxyacid (AHA), β-hydroxyacid (BHA), and polyhydroxyacid (PHA), respectively. When hydroxyacids were applied at high concentrations on the porcine skin every other day for 6 days, tissue viability was reduced to 50–80%, suggesting that the toxicity of cosmetic ingredients can be evaluated with this model. Based on tissue viability, the treatment scheme was changed to a single exposure for 20 min. The protective effects of a single exposure of hydroxyacids on skin barrier function were evaluated by examining rhodamine permeability and epidermal structural components of barrier function using immunohistochemistry (IHC) and immunofluorescence (IF) staining. Lactobionic acid (PHAs) improved skin barrier function most compared to other AHAs and BHAs. Most importantly, trans-epidermal water loss (TEWL), an important functional marker of skin barrier function, could be measured with this model, which confirmed the significant skin barrier-protective effects of PHAs. Collectively, we demonstrated that the ex vivo live full-thickness porcine skin model can be an excellent alternative to animal experiments for skin studies on the safety and efficacy of cosmetic ingredients.


2017 ◽  
Vol 68 (5) ◽  
pp. 937-943
Author(s):  
Stela Mariana Al Hussein ◽  
Nicoleta Todoran ◽  
Silvia Imre ◽  
Hussam Al Hussein ◽  
Ana Melero Zaera ◽  
...  

Despite the fact that in mild-to moderate acne vulgaris the standard first-line therapy is the topical treatment with fixed combinations of antimicrobial agents and retinoids, the skin type and the skin barrier function should be taken into account when formulating a topical product. The aim of this study was the comparison of three new semisolid formulations developed for topical application by evaluation of their rheological behavior, as well as the evaluation of in vitro percutaneous diffusion through human epidermis membrane of the pharmaceutical ingredients. Clindamycin phosphate and adapalene were incorporated in three different topical bases, an HPLC method for the determination of their content in the new formulations being developed and validated. A higher concentration of drugs was released from the two gel systems (hydroxypropylmethylcellulose 2.5% -F1 and hydroxyethylcellulose 3% -F2) than from the oil-in-water cream (F3) at pH 7.4, whereas at pH 5.5 the drugs were released in higher amounts from the formulation F3. Following the rheological behavoir associated with the penetrability through the human epidermis membrane, our study results suggest that F1 and F2 could be appropriate in treating acne lesions in patients with oily skin and unaffected skin barrier function. In contrast, the oil-in-water cream (F3), due to its possible emolient effect and its higher penetrability at pH 5.5 than gel vehicles, may be indicated for patients with dry and sensitive skin associated with an altered skin barrier.


Cosmetics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Sabrina Leoty-Okombi ◽  
Florence Gillaizeau ◽  
Sébastien Leuillet ◽  
Benoit Douillard ◽  
Sophie Le Fresne-Languille ◽  
...  

In this study, we assessed the change in skin microbiota composition, relative abundance, and diversity with skin physiology disruption induced by SLS patch. Healthy women declaring to have a reactive skin were submitted to a 0.5% aqueous sodium lauryl sulfate solution application under occlusive patch condition for 24 h. Skin properties were characterized by tewametry, corneometry, and colorimetry and bacterial diversity was assessed by 16S rRNA sequencing. Analysis before and one day after SLS patch removal revealed an increase of skin redness and a decrease of stratum corneum hydration and skin barrier function. The relative abundance of taxa containing potential pathogens increase (Firmicutes: Staphylococcaceae; Proteobacteria: Enterobacteriaceae, Pantoea) while some of the most occurring Actinobacteria with valuable skin protection and repair capacities decreased (Micrococcus, Kocuria, and Corynebacterium). We observed an impaired skin barrier function and dehydration induced by SLS patch disturb the subtle balance of skin microbiota towards skin bacterial community dysbiosis. This study provides new insights on the skin bacterial composition and skin physiology simultaneously impaired by a SLS patch.


Author(s):  
Tinghan Jia ◽  
Wu Qiao ◽  
Qifeng Yao ◽  
Wenhui Wu ◽  
Ken Kaku

Atopic dermatitis (AD) is a chronic inflammatory skin disease, which can cause skin barrier function damaged. Although co-incubation with docosahexaenoic acid (DHA) exerts a positive effect in deficient skin model, there is no study to investigate the effects of topical treatment with DHA in inflammatory reconstructed human epidermis (RHE) model. The effects of DHA on monolayer normal human epidermal keratinocyte (NHEK) cells were evaluated via CCK-8, qPCR and ELISA. The skin related barrier function was assessed by hematoxylin-eosin (HE) staining, western blot (WB), Immunohistofluorescence (IF) and ELISA in normal and inflammatory RHE models. DHA upregulated filaggrin and loricrin expression at mRNA levels in addition to suppress overexpression of TNF-α,IL-1α and IL-6 stimulated by poly I:C plus LPS (stimulation cocktail) in cultured NHEK cells. After topical treatment with DHA, cocktail induced inflammatory characteristics of skin diseases including barrier morphological, differentiation proteins and TSLP secretion, which were alleviated in RHE models. Supplementation with DHA can improved related barrier function and have anti-inflammation effects in monolayer keratinocytes and RHE models, which indicated that DHA may have a potential value for the treatment of inflammation-associate skin diseases.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3156
Author(s):  
Tinghan Jia ◽  
Wu Qiao ◽  
Qifeng Yao ◽  
Wenhui Wu ◽  
Ken Kaku

Atopic dermatitis (AD) is a chronic inflammatory skin disease that can cause skin barrier function damage. Although co-incubation with docosahexaenoic acid (DHA) exerts a positive effect on deficient skin models, no studies have investigated the effects of topical treatment with DHA in an inflammatory reconstructed human epidermis (RHE) model. The effects of DHA on monolayer normal human epidermal keratinocyte (NHEK) cells were evaluated using cell counting kit-8 (CCK-8), real-time quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). The skin-related barrier function was assessed using hematoxylin–eosin (HE) staining, Western blot (WB), immunohistofluorescence (IF), and ELISA in normal and inflammatory RHE models. Docosahexaenoic acid upregulated filaggrin and loricrin expression at mRNA levels in addition to suppressing overexpression of tumor necrosis factor-α (TNF-α), interleukin-α (IL-1α), and interleukin-6 (IL-6) stimulated by polyinosinic–polycytidylic acid (poly I:C) plus lipopolysaccharide (LPS) (stimulation cocktail) in cultured NHEK cells. After topical treatment with DHA, cocktail-induced inflammatory characteristics of skin diseases, including barrier morphology, differentiation proteins, and thymic stromal lymphopoietin (TSLP) secretion, were alleviated in RHE models. Supplementation with DHA can improve related barrier function and have anti-inflammation effects in monolayer keratinocytes and RHE models, which indicates that DHA may have potential value for the treatment of inflammation-associated skin diseases.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 44
Author(s):  
Ana Barrionuevo-Gonzalez ◽  
Sonja Trapp ◽  
Raffaella de Salvo ◽  
Rozalia Olsavszky ◽  
Elena Alina Nanu ◽  
...  

Two novel body/face wash gels enriched with emollient ingredients (including dexpanthenol) were developed for the daily care of dry skin. Two similarly designed 2-week studies (N = 42 each) were conducted to assess the biophysical and cosmetic performance of each of the new wash gels in healthy adults with dry skin. Instrumental measurements quantified the effects of the wash gels on stratum corneum (SC) hydration and transepidermal water loss (TEWL) (with and without a previous sodium lauryl sulfate (SLS) challenge) after single and repeated usage. Following single and repeated applications of the face wash gel to facial skin, as well as to dry SLS-undamaged and SLS-damaged skin of the forearm, skin hydration significantly increased. Similarly, after single and repeated usage of the body wash gel to dry SLS-undamaged and SLS-damaged skin of the forearm, skin moisturization increased significantly from baseline; comparisons with control areas provided inconsistent results for SLS-undamaged skin. No effects on TEWL were observed for either product. Both wash gels were well tolerated and the cosmetic performances were appreciated by the subjects. The study results suggest that daily use of the new wash gels was associated with significant skin-moisturizing effects without adversely affecting skin barrier function and repair.


Sign in / Sign up

Export Citation Format

Share Document