scholarly journals Perioperative Cardioprotection by Remote Ischemic Conditioning

2019 ◽  
Vol 20 (19) ◽  
pp. 4839 ◽  
Author(s):  
Youn Joung Cho ◽  
Won Ho Kim

Remote ischemic conditioning has been investigated for cardioprotection to attenuate myocardial ischemia/reperfusion injury. In this review, we provide a comprehensive overview of the current knowledge of the signal transduction pathways of remote ischemic conditioning according to three stages: Remote stimulus from source organ; protective signal transfer through neuronal and humoral factors; and target organ response, including myocardial response and coronary vascular response. The neuronal and humoral factors interact on three levels, including stimulus, systemic, and target levels. Subsequently, we reviewed the clinical studies evaluating the cardioprotective effect of remote ischemic conditioning. While clinical studies of percutaneous coronary intervention showed relatively consistent protective effects, the majority of multicenter studies of cardiac surgery reported neutral results although there have been several promising initial trials. Failure to translate the protective effects of remote ischemic conditioning into cardiac surgery may be due to the multifactorial etiology of myocardial injury, potential confounding factors of patient age, comorbidities including diabetes, concomitant medications, and the coadministered cardioprotective general anesthetic agents. Given the complexity of signal transfer pathways and confounding factors, further studies should evaluate the multitarget strategies with optimal measures of composite outcomes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sima Abbasi-Habashi ◽  
Glen C. Jickling ◽  
Ian R. Winship

Remote ischemic conditioning (RIC), which involves a series of short cycles of ischemia in an organ remote to the brain (typically the limbs), has been shown to protect the ischemic penumbra after stroke and reduce ischemia/reperfusion (IR) injury. Although the exact mechanism by which this protective signal is transferred from the remote site to the brain remains unclear, preclinical studies suggest that the mechanisms of RIC involve a combination of circulating humoral factors and neuronal signals. An improved understanding of these mechanisms will facilitate translation to more effective treatment strategies in clinical settings. In this review, we will discuss potential protective mechanisms in the brain and cerebral vasculature associated with RIC. We will discuss a putative role of the immune system and circulating mediators of inflammation in these protective processes, including the expression of pro-and anti-inflammatory genes in peripheral immune cells that may influence the outcome. We will also review the potential role of extracellular vesicles (EVs), biological vectors capable of delivering cell-specific cargo such as proteins and miRNAs to cells, in modulating the protective effects of RIC in the brain and vasculature.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 928 ◽  
Author(s):  
Zeljko J. Bosnjak ◽  
Zhi-Dong Ge

Perioperative myocardial ischemia and infarction are the leading causes of morbidity and mortality following anesthesia and surgery. The discovery of endogenous cardioprotective mechanisms has led to testing of new methods to protect the human heart. These approaches have included ischemic pre-conditioning, per-conditioning, post-conditioning, and remote conditioning of the myocardium. Pre-conditioning and per-conditioning include brief and repetitive periods of sub-lethal ischemia before and during prolonged ischemia, respectively; and post-conditioning is applied at the onset of reperfusion. Remote ischemic conditioning involves transient, repetitive, non-lethal ischemia and reperfusion in one organ or tissue (remote from the heart) that renders myocardium more resistant to lethal ischemia/reperfusion injury. In healthy, young hearts, many conditioning maneuvers can significantly increase the resistance of the heart against ischemia/reperfusion injury. The large multicenter clinical trials with ischemic remote conditioning have not been proven successful in cardiac surgery thus far. The lack of clinical success is due to underlying risk factors that interfere with remote ischemic conditioning and the use of cardioprotective agents that have activated the endogenous cardioprotective mechanisms prior to remote ischemic conditioning. Future preclinical research using remote ischemic conditioning will need to be conducted using comorbid models.


2019 ◽  
Vol 15 (4) ◽  
pp. 454-460
Author(s):  
Xiao-Qiu Li ◽  
Lin Tao ◽  
Zhong-He Zhou ◽  
Yu Cui ◽  
Hui-Sheng Chen ◽  
...  

Rationale A large number of basic and clinical studies have proved that remote ischemic conditioning has neuroprotective effect. For example, remote ischemic conditioning showed a neuroprotective role in cerebral ischemia-reperfusion injury model. Recent clinical studies suggested that remote ischemic conditioning may improve neurological function and reduce the risk of recurrence in ischemic stroke patients. However, there is a lack of convincing evidence for the neuroprotective effect of remote ischemic conditioning on ischemic stroke, which deserves further study. Aim To explore the efficacy and safety of remote ischemic conditioning for acute moderate ischemic stroke. Sample size estimates A maximum of 1800 subjects are required to test the superiority hypothesis with 80% power according to a one-sided 0.025 level of significance, stratified by gender, age, time from onset to treatment, National Institutes of Health Stroke Scale (6–10 vs. 11–16), degree of responsible vessel stenosis, location of stenosis, and stroke etiology. Methods and design Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke is a prospective, random, open label, blinded endpoint and multi-center study. The subjects are divided into experimental group and control group randomly. The experimental group was treated with remote ischemic conditioning twice daily with 200 mmHg pressure for 10–14 days besides guideline-based therapy. The control group was treated according to the guidelines. Study outcome The primary efficacy endpoint is favorable functional outcome, defined as modified Rankin Scale 0–1 at 90 days post-randomization.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1164
Author(s):  
Siying Song ◽  
Linlin Guo ◽  
Di Wu ◽  
Jingfei Shi ◽  
Yunxia Duan ◽  
...  

Background: Animal and clinical studies have shown that remote ischemic conditioning (RIC) has protective effects for cerebral vascular diseases, with induced humoral factor changes in the peripheral blood. However, many findings are heterogeneous, perhaps due to differences in the RIC intervention schemes, enrolled populations, and sample times. This study aimed to examine the RIC-induced changes in the plasma proteome using rhesus monkey models of strokes. Methods: Two adult rhesus monkeys with autologous blood clot-induced middle cerebral artery (MCA) occlusion underwent RIC interventions twice a week for five consecutive weeks. Each RIC treatment included five cycles of five minutes of ischemia alternating with five minutes of reperfusion of the forearm. The blood samples were taken from the median cubital vein of the monkeys at baseline and immediately after each week’s RIC stimulus. The plasma samples were isolated for a proteomic analysis using mass spectrometry (MS). Results: Several proteins related to lipid metabolism (Apolipoprotein A-II and Apolipoprotein C-II), coagulation (Fibrinogen alpha chain and serpin), immunoinflammatory responses (complement C3 and C1), and endovascular hemostasis (basement membrane-specific heparan sulfate proteoglycan) were significantly modulated after the RIC intervention. Many of these induced changes, such as in the lipid metabolism regulation and anticoagulation responses, starting as early as two weeks following the RIC intervention. The complementary activation and protection of the endovascular cells occurred more than three weeks postintervention. Conclusions: Multiple protective effects were induced by RIC and involved lipid metabolism regulation (anti-atherogenesis), anticoagulation (antithrombosis), complement activation, and endovascular homeostasis (anti-inflammation). In conclusion, this study indicates that RIC results in significant modulations of the plasma proteome. It also provides ideas for future research and screening targets.


2018 ◽  
Vol 315 (1) ◽  
pp. H150-H158 ◽  
Author(s):  
Marie Hauerslev ◽  
Sivagowry Rasalingam Mørk ◽  
Kasper Pryds ◽  
Hussain Contractor ◽  
Jan Hansen ◽  
...  

Remote ischemic conditioning (RIC) protects against sustained myocardial ischemia. Because of overlapping mechanisms, this protection may be altered by glyceryl trinitrate (GTN), which is commonly used in the treatment of patients with chronic ischemic heart disease. We investigated whether long-term GTN treatment modifies the protection by RIC in the rat myocardium and human endothelium. We studied infarct size (IS) in rat hearts subjected to global ischemia-reperfusion (I/R) in vitro and endothelial function in healthy volunteers subjected to I/R of the upper arm. In addition to allocated treatment, rats were coadministered with reactive oxygen species (ROS) or nitric oxide (NO) scavengers. Rats and humans were randomized to 1) control, 2) RIC, 3) GTN, and 4) GTN + RIC. In protocols 3 and 4, rats and humans underwent long-term GTN treatment for 7 consecutive days, applied subcutaneously or 2 h daily transdermally. In rats, RIC and long-term GTN treatment reduced mean IS (18 ± 12%, P = 0.007 and 15 ± 5%, P = 0.002) compared with control (35 ± 13%). RIC and long-term GTN treatment in combination did not reduce IS (29 ± 12%, P = 0.55 vs. control). ROS and NO scavengers both attenuated IS reduction by RIC and long-term GTN treatment. In humans, I/R reduced endothelial function ( P = 0.01 vs. baseline). Separately, RIC and long-term GTN prevented the reduction in endothelial function caused by I/R; given in combination, prevention was lost. RIC and long-term GTN treatment both protect against rat myocardial and human endothelial I/R injury through ROS and NO-dependent mechanisms. However, when given in combination, RIC and long-term GTN treatment fail to confer protection. NEW & NOTEWORTHY Remote ischemic conditioning (RIC) and long-term glyceryl trinitrate (GTN) treatment protect against ischemia-reperfusion injury in both human endothelium and rat myocardium. However, combined application of RIC and long-term GTN treatment abolishes the individual protective effects of RIC and GTN treatment on ischemia-reperfusion injury, suggesting an interaction of clinical importance.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 974 ◽  
Author(s):  
Aileen Hill ◽  
Sebastian Wendt ◽  
Carina Benstoem ◽  
Christina Neubauer ◽  
Patrick Meybohm ◽  
...  

The pleiotropic biochemical and antioxidant functions of vitamin C have sparked recent interest in its application in intensive care. Vitamin C protects important organ systems (cardiovascular, neurologic and renal systems) during inflammation and oxidative stress. It also influences coagulation and inflammation; its application might prevent organ damage. The current evidence of vitamin C’s effect on pathophysiological reactions during various acute stress events (such as sepsis, shock, trauma, burn and ischemia-reperfusion injury) questions whether the application of vitamin C might be especially beneficial for cardiac surgery patients who are routinely exposed to ischemia/reperfusion and subsequent inflammation, systematically affecting different organ systems. This review covers current knowledge about the role of vitamin C in cardiac surgery patients with focus on its influence on organ dysfunctions. The relationships between vitamin C and clinical health outcomes are reviewed with special emphasis on its application in cardiac surgery. Additionally, this review pragmatically discusses evidence on the administration of vitamin C in every day clinical practice, tackling the issues of safety, monitoring, dosage, and appropriate application strategy.


2020 ◽  
Vol 25 (6) ◽  
pp. 487-493
Author(s):  
Hans Erik Bøtker

Translation of the cardioprotective effect by pharmacological and mechanical conditioning therapies into improvement of clinical outcome for the patients has been disappointing. Confounding factors like comorbidity and comedications may explain some of the loss in translation. However, the substantial improvement of outcome in disease states involving ischemia–reperfusion injury, that is, planned cardiac surgery, elective percutaneous coronary intervention, and even primary percutaneous coronary intervention for ST-segment myocardial infarction (STEMI), is the most plausible explanation for the missed demonstration of a clinical benefit. Remote ischemic conditioning has demonstrated consistent cardioprotective effect in experimental and in clinical proof-of-concept studies. As an adjunctive cardioprotective treatment beyond reperfusion, remote ischemic conditioning should address target populations at risk of extensive tissue damage, including patients who experience complications, which may induce profound myocardial ischemia in relation to cardiac surgery or elective percutaneous coronary intervention. Moreover, patients with STEMI and predictable impaired clinical outcome due to delayed hospital admission, high Killip class, cardiogenic shock, and cardiac arrest remain target groups. For high-risk patients, daily remote ischemic conditioning or the corollary of blood flow-restricted exercise may be alternative cardioprotective options during postoperative and post-myocardial infarct rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document