scholarly journals Progress in iPSC-Based Modeling of Psychiatric Disorders

2019 ◽  
Vol 20 (19) ◽  
pp. 4896 ◽  
Author(s):  
Anke Hoffmann ◽  
Michael Ziller ◽  
Dietmar Spengler

Progress in iPSC-based cellular systems provides new insights into human brain development and early neurodevelopmental deviations in psychiatric disorders. Among these, studies on schizophrenia (SCZ) take a prominent role owing to its high heritability and multifarious evidence that it evolves from a genetically induced vulnerability in brain development. Recent iPSC studies on patients with SCZ indicate that functional impairments of neural progenitor cells (NPCs) in monolayer culture extend to brain organoids by disrupting neocorticogenesis in an in vitro model. In addition, the formation of hippocampal circuit-like structures in vitro is impaired in patients with SCZ as is the case for glia development. Intriguingly, chimeric-mice experiments show altered oligodendrocyte and astrocyte development in vivo that highlights the importance of cell–cell interactions in the pathogenesis of early-onset SCZ. Likewise, cortical imbalances in excitatory–inhibitory signaling may result from a cell-autonomous defect in cortical interneuron (cIN) development. Overall, these findings indicate that genetic risk in SCZ impacts neocorticogenesis, hippocampal circuit formation, and the development of distinct glial and neuronal subtypes. In light of this remarkable progress, we discuss current limitations and further steps necessary to harvest the full potential of iPSC-based investigations on psychiatric disorders.

2017 ◽  
Author(s):  
Jil Sander ◽  
Susanne V. Schmidt ◽  
Branko Cirovic ◽  
Naomi McGovern ◽  
Olympia Papantonopoulou ◽  
...  

AbstractThe clinical and therapeutic value of humanin vitrogenerated monocyte-derived dendritic cell (moDC) and macrophages is well established. However, in line with recent findings regarding myeloid cell ontogeny and due to our limited understanding of their physiological counterparts, transcriptional regulation and heterogeneity, the full potential of these important cellular systems is still underestimated.In this study, we use cutting edge high-dimensional analysis methods to better understand the transcriptional organization, phenotypic heterogeneity and functional differences between humanex vivoisolated andin vitrogenerated mononuclear phagocytes with the aim to better realize their full potential in the clinic.We demonstrate that human monocytes activated by MCSF or GMCSF most closely resemble inflammatory macrophages identifiedin vivo, while IL4 signalling in the presence of GMCSF generates moDCs resembling inflammatory DCsin vivo, but not steady state cDC1 or cDC2. Moreover, these reprogramming regimes lead to activated monocytes that present with profoundly different transcriptomic, metabolic, phenotypic and functional profiles. Furthermore, we demonstrate that CD14+monocytes are integrating multiple exogenous activation signals such as GMCSF and IL4 in a combinatorial and temporal fashion, resulting in a high-dimensional cellular continuum of reprogrammed monocytes dependent on the mode and timing of cytokine exposure. Utilizing nanostraw-based knockdown technology, we demonstrate that the IL4-dependent generation of moDCs relies on the induction, nuclear localization and function of the transcriptional regulator NCOR2.Finally, we unravel unappreciated heterogeneity within the clinically moDCs population and propose a novel high-dimensional phenotyping strategy to better tailor clinical quality control strategies for patient need and culture conditions to enhance therapeutic outcome.


2020 ◽  
Vol 91 ◽  
pp. 116-130
Author(s):  
Susanna H. Wegner ◽  
Julie Juyoung Park ◽  
Tomomi Workman ◽  
Sanne A.B. Hermsen ◽  
Jim Wallace ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1448
Author(s):  
Erika Cottone ◽  
Valentina Pomatto ◽  
Stefania Rapelli ◽  
Rosaria Scandiffio ◽  
Ken Mackie ◽  
...  

The endocannabinoid system (ECS) is involved in the modulation of several basic biological processes, having widespread roles in neurodevelopment, neuromodulation, immune response, energy homeostasis and reproduction. In the adult central nervous system (CNS) the ECS mainly modulates neurotransmitter release, however, a substantial body of evidence has revealed a central role in regulating neurogenesis in developing and adult CNS, also under pathological conditions. Due to the complexity of investigating ECS functions in neural progenitors in vivo, we tested the suitability of the ST14A striatal neural progenitor cell line as a simplified in vitro model to dissect the role and the mechanisms of ECS-regulated neurogenesis, as well as to perform ECS-targeted pharmacological approaches. We report that ST14A cells express various ECS components, supporting the presence of an active ECS. While CB1 and CB2 receptor blockade did not affect ST14A cell number, exogenous administration of the endocannabinoid 2-AG and the synthetic CB2 agonist JWH133 increased ST14A cell proliferation. Phospholipase C (PLC), but not PI3K pharmacological blockade negatively modulated CB2-induced ST14A cell proliferation, suggesting that a PLC pathway is involved in the steps downstream to CB2 activation. On the basis of our results, we propose ST14A neural progenitor cells as a useful in vitro model for studying ECS modulation of neurogenesis, also in prospective in vivo pharmacological studies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


1988 ◽  
Vol 15 (3) ◽  
pp. 219-223
Author(s):  
Jørgen Clausen ◽  
Søren Achim Nielsen

The mixed-function oxygenase system involved in the metabolism of drugs and xenobiotics has been extensively studied in various animal species and in various organs (1). It is now apparent that in humans the p-450 complex is one representative of a related family, expressed by 13 c-DNA genes showing approximately 36% similarity between the different subfamilies (2). In order to compare the in vivo and in vitro metabolic effects of drugs and xenobiotics, the induction capabilities of the mixed-function oxygenase must be known. The most sensitive non-isotopic assay system for determination of mixed-function oxygenase activity is the method of Nebert & Gelboin (3,4), which is based on the metabolic transformation of benzo-(a)-pyrene to its fluorescent hydroxyl derivatives (5). However, the levels of the mixed-function oxygenase enzymes in different cellular systems show great variations, with the highest activities in liver cells. Therefore, in order to use human lymphocytes and other cellular systems with low mixed-function oxygenase activities, the assay method for determining oxygenase activity must have the highest possible sensitivity. The present communication is devoted to a study aimed at increasing the sensitivity of Nebert & Gelboin's methods for assay of mixed-function oxygenase subfamilies using benzo-(a)-pyrene as a substrate.


2021 ◽  
Vol 22 (6) ◽  
pp. 2925
Author(s):  
Victor Häussling ◽  
Romina H Aspera-Werz ◽  
Helen Rinderknecht ◽  
Fabian Springer ◽  
Christian Arnscheidt ◽  
...  

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


Sign in / Sign up

Export Citation Format

Share Document