scholarly journals Radiofrequency Irradiation Modulates TRPV1-Related Burning Sensation in Rosacea

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2261
Author(s):  
Zuzanna Rzepka ◽  
Jakub Rok ◽  
Justyna Kowalska ◽  
Klaudia Banach ◽  
Justyna Magdalena Hermanowicz ◽  
...  

Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe neuropsychiatric abnormalities. The cellular and molecular aspects of the nervous system disorders associated with hypovitaminosis B12 remain largely unknown. Growing evidence indicates that astrogliosis is an underlying component of a wide range of neuropathologies. Previously, we developed an in vitro model of cobalamin deficiency in normal human astrocytes (NHA) by culturing the cells with c-lactam of hydroxycobalamin (c-lactam OH-Cbl). We revealed a non-apoptotic activation of caspases (3/7, 8, 9) in cobalamin-deficient NHA, which may suggest astrogliosis. The aim of the current study was to experimentally verify this hypothesis. We indicated an increase in the cellular expression of two astrogliosis markers: glial fibrillary acidic protein and vimentin in cobalamin-deficient NHA using Western blot analysis and immunocytochemistry with confocal laser scanning microscopy. In the next step of the study, we revealed c-lactam OH-Cbl as a potential non-toxic vitamin B12 antagonist in an in vivo model using zebrafish embryos. We believe that the presented results will contribute to a better understanding of the cellular mechanism underlying neurologic pathology due to cobalamin deficiency and will serve as a foundation for further studies.


2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1985680 ◽  
Author(s):  
Poliana de Araujo Oliveira ◽  
Queli Cristina Fidelis ◽  
Thayane Ferreira da Costa Fernandes ◽  
Milene Conceição de Souza ◽  
Dayane Magalhães Coutinho ◽  
...  

Ouratea species are used for the treatment of inflammation-related diseases such as rheumatism and arthritic disorders. The Ouratea genus is a rich source of flavonoids and bioflavonoids and for this reason we evaluated the effects of the biflavonoid fractions from the leaves of O. hexasperma (OHME) and O. ferruginea (OFME) in the in vivo model of complete Freund’s adjuvant (CFA)-induced arthritis and in the in vitro model of oxidative stress and cellular viability. The CFA-induced arthritis model in rats was followed by paw volume, articular incapacitation and Randall-selitto models, as well as quantification of cytokines and serum C-terminal telopeptide of type I collagen levels. OHME and OFME demonstrated antinociceptive and anti-inflammatory activities, as well as improvement in articular incapacity and reduction in levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α, and type 1 collagen, and increased cell viability. No adverse effects were observed. The results suggest that OHME and OFME can reduce inflammation and bone resorption besides their antioxidant action.


2019 ◽  
Vol 48 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Hongyao Xu ◽  
Xiangjie Zou ◽  
Pengcheng Xia ◽  
Mohammad Ahmad Kamal Aboudi ◽  
Ran Chen ◽  
...  

Background: Meniscal injury is very common, and injured meniscal tissue has a limited healing ability because of poor vascularity. Platelets contain both pro- and anti-angiogenic factors, which can be released by platelet selective activation. Hypothesis: Platelets release a high level of vascular endothelial growth factor (VEGF) when they are activated by protease-activated receptor 1 (PAR1), whereas the platelets release endostatin when they are activated by protease-activated receptor 4 (PAR4). The PAR1-treated platelets enhance the proliferation of meniscal cells in vitro and promote in vivo healing of wounded meniscal tissue. Study Design: Controlled laboratory study. Method: Platelets were isolated from human blood and activated with different reagents. The released growth factors from the activated platelets were determined by immunostaining and enzyme-linked immunosorbent assay. The effects of the platelets with different treatments on meniscal cells were tested by an in vitro model of cell culture and an in vivo model of wounded meniscal healing. Results: The results indicated that platelets contained both pro- and antiangiogenic factors including VEGF and endostatin. In unactivated platelets, VEGF and endostatin were contained inside of the platelets. Both VEGF and endostatin were released from the platelets when they were activated by thrombin. However, only VEGF was released from the platelets when they were activated by PAR1, and only endostatin was released from the platelets when they were activated by PAR4. The rat meniscal cells grew much faster in the medium that contained PAR1-activated platelets than in the medium that contained either PAR4-activated platelets or unactivated platelets. The wounds treated with PAR1-activated platelets healed faster than those treated with either PAR4-activated platelets or unactivated platelets. Many blood vessel–like structures were found in the wounded menisci treated with PAR1-activated platelets. Conclusion: The PAR1-activated platelets released high levels of VEGF, which increased the proliferation of rat meniscal cells in vitro, enhanced the vascularization of menisci in vivo, and promoted healing of wounded menisci. Clinical Relevance: Our results suggested that selective activated platelets can be used clinically to enhance healing of wounded meniscal tissue.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3667
Author(s):  
Lien-Yu Chou ◽  
Yu-Ming Chao ◽  
Yen-Chun Peng ◽  
Hui-Ching Lin ◽  
Yuh-Lin Wu

Brain-derived neurotrophic factor (BDNF) is an important factor for memory consolidation and cognitive function. Protein kinase A (PKA) signaling interacts significantly with BDNF-provoked downstream signaling. Glucosamine (GLN), a common dietary supplement, has been demonstrated to perform a variety of beneficial physiological functions. In the current study, an in vivo model of 7-week-old C57BL/6 mice receiving daily intraperitoneal injection of GLN (0, 3, 10 and 30 mg/animal) was subjected to the novel object recognition test in order to determine cognitive performance. GLN significantly increased cognitive function. In the hippocampus GLN elevated tissue cAMP concentrations and CREB phosphorylation, and upregulated the expression of BDNF, CREB5 and the BDNF receptor TrkB, but it reduced PDE4B expression. With the in vitro model in the HT22 hippocampal cell line, GLN exposure significantly increased protein and mRNA levels of BDNF and CREB5 and induced cAMP responsive element (CRE) reporter activity; the GLN-mediated BDNF expression and CRE reporter induction were suppressed by PKA inhibitor H89. Our current findings suggest that GLN can exert a cognition-enhancing function and this may act at least in part by upregulating the BDNF levels via a cAMP/PKA/CREB-dependent pathway.


1998 ◽  
Vol 275 (3) ◽  
pp. C818-C825 ◽  
Author(s):  
Jérôme Frenette ◽  
James G. Tidball

The hypothesis that mechanical loading regulates talin expression in developing and adult muscle was tested using in vitro and in vivo models. Talin was selected for study because it is a key structural link between the cytoskeleton and cell membrane. In the in vitro model, C2C12myotubes were subjected to cyclic strains for 48 h. In the in vivo model, rat hindlimb muscles were unloaded for 10 days, then reloaded for 2 days. Cyclic loading of myotubes resulted in significant increases in the quantity of talin (68%) and its 190-kDa proteolytic fragment (70%), as well as talin mRNA (180%), relative to unloaded myotube cultures. Similarly, talin concentration and its mRNA increased by 68 and 136%, respectively, in soleus muscles reloaded for 2 days relative to ambulatory controls. Immunohistochemistry and in situ RT-PCR showed that talin and its mRNA are concentrated and colocalized at myotendinous junctions. Thus these findings indicate that increased mechanical loading promotes talin synthesis, which occurs principally at myotendinous junctions, according to talin mRNA distribution.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuanyuan Guan ◽  
Yuemei Ma ◽  
Yao Tang ◽  
Xiaolei Liu ◽  
Yan Zhao ◽  
...  

Abstract Background This study was designed to investigate the mechanism and effects of miRNA-221-5p on the T-helper 17 (Th17)/T-regulatory (Treg) ratio in asthma. Methods BALB/c mice were intranasally challenged with 100 µg OVA on 14 and 21 day. Mice were rechallenged with 2.5% OVA-PBS on 22 and 28 day. Mice were sacrificed using on day 30 under 35 mg/kg pentobarbital sodium. PBMCs were induced vitro model of asthma using 500 ng of lipopolysaccharides (LPS) for 4 h. Results The expression of miRNA-221-5p was reduced in in vivo model, compared sham group. The vitro model of asthma treated with miRNA-221-5p mimic resulted in the reduction of IL-6, IL-17, IL-21 and IL-22 levels, and induction of IL-10, IL-35 and TGF-β levels. In addition, down-regulation of miRNA-221-5p induced the protein expression of suppressor of cytokine signaling 1 (SOCS1) and receptor-related orphan receptor-gamma-t (RORγt) and suppressed that of FOXP3 in in vitro model of asthma. Over-expression of miRNA-221-5p induced the protein expression of FOXP3, and suppressed that of SOCS1 and RORγt in in vitro model of asthma. The inhibition of SOCS1 or RORγt attenuated the effects of anti-miRNA-221-5p on Th17/Treg ratio in asthma. Conclusion miRNA-221-5p may play critical roles in driving the differentiation of Th17/Treg ratio via RORγt/Foxp3 by Targeting SOCS1, reduced the function of Th17 cells by directly inhibiting RORγt/SOCS1 and promoted the function of Treg cells via Foxp3/ SOCS1 in asthma.


1999 ◽  
Vol 67 (7) ◽  
pp. 3566-3570 ◽  
Author(s):  
Jill A. Hoffman ◽  
Carol Wass ◽  
Monique F. Stins ◽  
Kwang Sik Kim

ABSTRACT The vast majority of cases of gram-negative meningitis in neonates are caused by K1-encapsulated Escherichia coli. The role of the K1 capsule in the pathogenesis of E. coli meningitis was examined with an in vivo model of experimental hematogenousE. coli K1 meningitis and an in vitro model of the blood-brain barrier. Bacteremia was induced in neonatal rats with theE. coli K1 strain C5 (O18:K1) or its K1−derivative, C5ME. Subsequently, blood and cerebrospinal fluid (CSF) were obtained for culture. Viable bacteria were recovered from the CSF of animals infected with E. coli K1 strains only; none of the animals infected with K1− strains had positive CSF cultures. However, despite the fact that their cultures were sterile, the presence of O18 E. coli was demonstrated immunocytochemically in the brains of animals infected with K1− strains and was seen by staining of CSF samples. In vitro, brain microvascular endothelial cells (BMEC) were incubated with K1+ and K1− E. coli strains. The recovery of viable intracellular organisms of the K1+strain was significantly higher than that for the K1−strain (P = 0.0005). The recovery of viable intracellular K1− E. coli bacteria was increased by cycloheximide treatment of BMEC (P = 0.0059) but was not affected by nitric oxide synthase inhibitors or oxygen radical scavengers. We conclude that the K1 capsule is not necessary for the invasion of bacteria into brain endothelial cells but is responsible for helping to maintain bacterial viability during invasion of the blood-brain barrier.


2012 ◽  
Vol 37 (3) ◽  
pp. 219-227 ◽  
Author(s):  
K Yuan ◽  
X Sun ◽  
F Wang ◽  
H Wang ◽  
J Chen

SUMMARY This study evaluated the accuracy and reliability of three computer-aided shade matching instruments (Shadepilot, VITA Easyshade, and ShadeEye NCC) using both in vitro and in vivo models. The in vitro model included the measurement of five VITA Classical shade guides. The in vivo model utilized three instruments to measure the central region of the labial surface of maxillary right central incisors of 85 people. The accuracy and reliability of the three instruments in these two evaluating models were calculated. Significant differences were observed in the accuracy of instruments both in vitro and in vivo. No significant differences were found in the reliability of instruments between and within the in vitro and the in vivo groups. VITA Easyshade was significantly different in accuracy between in vitro and in vivo models, while no significant difference was found for the other two instruments. Shadepilot was the only instrument tested in the present study that showed high accuracy and reliability both in vitro and in vivo. Significant differences were observed in the L*a*b* values of the 85 natural teeth measured using three instruments in the in vivo assessment. The pair-agreement rates of shade matching among the three instruments ranged from 37.7% to 48.2%, and the incidence of identical shade results shared by all three instruments was 25.9%. As different L*a*b* values and shade matching results were reported for the same tooth, a combination of the evaluated shade matching instruments and visual shade confirmation is recommended for clinical use.


Author(s):  
'Michelle' Ji Yeon Yoo ◽  
Xiao Dong Chen

Many attempts to model the human gastrointestinal tract (GIT) were made since the beginning of the last decade. The main purpose was either to simulate an in vivo testing of drugs on animals or to investigate the viability of the probiotic intake. Two well-known physio-chemical models regarding the viability of the probiotics have been produced. In 1993, Molly et al. developed a simulator of the human intestinal microbial ecosystem (SHIME). Six reactors simulating the conditions of human stomach, duodenum/jejunum, ileum, caecum/ascending colon, transverse colon and descending colon were artificially developed. In 1995, Minekus et al. created a TNO gastro-intestinal model (TIM) with four computer-controlled chambers simulating the conditions of stomach, duodenum, jejunum and ileum. The simulated parameters included the body temperature, pH, salivary, gastric and intestinal mixing with peristaltic movements, secretions and absorption of water and small molecules. Despite the use of pharmacological, physiological and biochemical knowledge of the human and animal GIT and associated secretions, conflicting results such as the extremely low viability of probiotics were obtained. The failure of the above two models indicates the necessity of devising a suitable in vitro model that would be capable of simulating the digestion process as an exact replica of the actual in vivo model. In this paper, the key aspects of the above have been summarized and discussed.


Sign in / Sign up

Export Citation Format

Share Document