scholarly journals Fluorescent Protein-Based Indicators for Functional Super-Resolution Imaging of Biomolecular Activities in Living Cells

2019 ◽  
Vol 20 (22) ◽  
pp. 5784 ◽  
Author(s):  
Kai Lu ◽  
Cong Quang Vu ◽  
Tomoki Matsuda ◽  
Takeharu Nagai

Super-resolution light microscopy (SRM) offers a unique opportunity for diffraction-unlimited imaging of biomolecular activities in living cells. To realize such potential, genetically encoded indicators were developed recently from fluorescent proteins (FPs) that exhibit phototransformation behaviors including photoactivation, photoconversion, and photoswitching, etc. Super-resolution observations of biomolecule interactions and biochemical activities have been demonstrated by exploiting the principles of bimolecular fluorescence complementation (BiFC), points accumulation for imaging nanoscale topography (PAINT), and fluorescence fluctuation increase by contact (FLINC), etc. To improve functional nanoscopy with the technology of genetically encoded indicators, it is essential to fully decipher the photo-induced chemistry of FPs and opt for innovative indicator designs that utilize not only fluorescence intensity but also multi-parametric readouts such as phototransformation kinetics. In parallel, technical improvements to both the microscopy optics and image analysis pipeline are promising avenues to increase the sensitivity and versatility of functional SRM.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 998 ◽  
Author(s):  
Eric A. Shelden ◽  
Zachary T. Colburn ◽  
Jonathan C.R. Jones

Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.


2010 ◽  
Vol 90 (3) ◽  
pp. 1103-1163 ◽  
Author(s):  
Dmitriy M. Chudakov ◽  
Mikhail V. Matz ◽  
Sergey Lukyanov ◽  
Konstantin A. Lukyanov

Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.


eLife ◽  
2012 ◽  
Vol 1 ◽  
Author(s):  
Travis J Gould ◽  
Joerg Bewersdorf

A new form of green fluorescent protein allows super-resolution imaging to be performed faster on living cells with low radiation doses.


2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2847-2859
Author(s):  
Soojung Kim ◽  
Hyerin Song ◽  
Heesang Ahn ◽  
Seung Won Jun ◽  
Seungchul Kim ◽  
...  

AbstractAnalysing dynamics of a single biomolecule using high-resolution imaging techniques has been had significant attentions to understand complex biological system. Among the many approaches, vertical nanopillar arrays in contact with the inside of cells have been reported as a one of useful imaging applications since an observation volume can be confined down to few-tens nanometre theoretically. However, the nanopillars experimentally are not able to obtain super-resolution imaging because their evanescent waves generate a high optical loss and a low signal-to-noise ratio. Also, conventional nanopillars have a limitation to yield 3D information because they do not concern field localization in z-axis. Here, we developed novel hybrid nanopillar arrays (HNPs) that consist of SiO2 nanopillars terminated with gold nanodisks, allowing extreme light localization. The electromagnetic field profiles of HNPs are obtained through simulations and imaging resolution of cell membrane and biomolecules in living cells are tested using one-photon and 3D multiphoton fluorescence microscopy, respectively. Consequently, HNPs present approximately 25 times enhanced intensity compared to controls and obtained an axial and lateral resolution of 110 and 210 nm of the intensities of fluorophores conjugated with biomolecules transported in living cells. These structures can be a great platform to analyse complex intracellular environment.


2021 ◽  
pp. 130151
Author(s):  
Yuanyuan Liu ◽  
Chengying Zhang ◽  
Yongchun Wei ◽  
Huimin Chen ◽  
Lingxiu Kong ◽  
...  

2006 ◽  
Vol 84 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Preetinder K. Dhanoa ◽  
Alison M. Sinclair ◽  
Robert T. Mullen ◽  
Jaideep Mathur

The discovery and development of multicoloured fluorescent proteins has led to the exciting possibility of observing a remarkable array of subcellular structures and dynamics in living cells. This minireview highlights a number of the more common fluorescent protein probes in plants and is a testimonial to the fact that the plant cell has not lagged behind during the live-imaging revolution and is ready for even more in-depth exploration.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Karl Zhanghao ◽  
Xingye Chen ◽  
Wenhui Liu ◽  
Meiqi Li ◽  
Yiqiong Liu ◽  
...  

Abstract Fluorescence polarization microscopy images both the intensity and orientation of fluorescent dipoles and plays a vital role in studying molecular structures and dynamics of bio-complexes. However, current techniques remain difficult to resolve the dipole assemblies on subcellular structures and their dynamics in living cells at super-resolution level. Here we report polarized structured illumination microscopy (pSIM), which achieves super-resolution imaging of dipoles by interpreting the dipoles in spatio-angular hyperspace. We demonstrate the application of pSIM on a series of biological filamentous systems, such as cytoskeleton networks and λ-DNA, and report the dynamics of short actin sliding across a myosin-coated surface. Further, pSIM reveals the side-by-side organization of the actin ring structures in the membrane-associated periodic skeleton of hippocampal neurons and images the dipole dynamics of green fluorescent protein-labeled microtubules in live U2OS cells. pSIM applies directly to a large variety of commercial and home-built SIM systems with various imaging modality.


2021 ◽  
Author(s):  
Anna Loeschberger ◽  
Yauheni Novikau ◽  
Ralf Netz ◽  
Marie-Christin Spindler ◽  
Ricardo Benavente ◽  
...  

Three-dimensional (3D) multicolor super-resolution imaging in the 50-100 nm range in fixed and living cells remains challenging. We extend the resolution of structured illumination microscopy (SIM) by an improved nonlinear iterative reconstruction algorithm that enables 3D multicolor imaging with improved spatiotemporal resolution at low illumination intensities. We demonstrate the performance of dual iterative SIM (diSIM) imaging cellular structures in fixed cells including synaptonemal complexes, clathrin coated pits and the actin cytoskeleton with lateral resolutions of 60-100 nm with standard fluorophores. Furthermore, we visualize dendritic spines in 70 micrometer thick brain slices with an axial resolution < 200 nm. Finally, we image dynamics of the endoplasmatic reticulum and microtubules in living cells with up to 255 frames/s.


2010 ◽  
Vol 35 (20) ◽  
pp. 3501 ◽  
Author(s):  
Kyujung Kim ◽  
Youngjin Oh ◽  
Wonju Lee ◽  
Donghyun Kim

Sign in / Sign up

Export Citation Format

Share Document