scholarly journals Genome-Wide Identification, Evolution and Expression of the Complete Set of Cytoplasmic Ribosomal Protein Genes in Nile Tilapia

2020 ◽  
Vol 21 (4) ◽  
pp. 1230
Author(s):  
Gangqiao Kuang ◽  
Wenjing Tao ◽  
Shuqing Zheng ◽  
Xiaoshuang Wang ◽  
Deshou Wang

Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. In the present study, we carried out a comprehensive analysis of RPs in chordates and examined the expression profiles of the complete set of 92 cytoplasmic RP genes in Nile tilapia. The RP genes were randomly distributed throughout the tilapia genome. Phylogenetic and syntenic analyses revealed the existence of duplicated RP genes from 2R (RPL3, RPL7, RPL22 and RPS27) and 3R (RPL5, RPL19, RPL22, RPL41, RPLP2, RPS17, RPS19 and RPS27) in tilapia and even more from 4R in common carp and Atlantic salmon. The RP genes were found to be expressed in all tissues examined, but their expression levels differed among different tissues. Gonadal transcriptome analysis revealed that almost all RP genes were highly expressed, and their expression levels were highly variable between ovaries and testes at different developmental stages in tilapia. No sex- and stage-specific RP genes were found. Eleven RP genes displayed sexually dimorphic expression with nine higher in XY gonad and two higher in XX gonad at all stages examined, which were proved to be phenotypic sex dependent. Quantitative real-time PCR and immunohistochemistry ofRPL5b and RPL24 were performed to validate the transcriptome data. The genomic resources and expression data obtained in this study will contribute to a better understanding of RPs evolution and functions in chordates.

2017 ◽  
Author(s):  
Xueling Li ◽  
Gang Chen ◽  
Bernard Fongang ◽  
Dirar Homouz ◽  
Maga Rowicka ◽  
...  

AbstractThe yeast ribosome is a complex molecular machine built from four rRNAs and over 70 r-proteins. Ribosome biogenesis involves ordered incorporation of ribosomal proteins, accompanied by and association and dissociation of other proteins specific to different stages of the process. By model-based analysis of temporal profiles of gene expression in a metabolically regulated system, we obtained an accurate, high-resolution estimation of the time of expression of genes coding for proteins involved in ribosome biogenesis. The ribosomal proteins are expressed in a sequence that spans approximately 25-minutes under metabolically regulated conditions. The genes coding for proteins incorporated into the mature ribosome are expressed significantly later than those that are not incorporated, but are otherwise involved in ribosome biogenesis, localization and assembly, rRNA processing and translational initiation. The relative expression time of proteins localized within specified neighborhood is significantly correlated with the distance to the centroid of the mature ribosome: protein localized closer to the center of mass of the entire complex tend to be expressed earlier than the protein localized further from the center. The timeline of gene expression also agrees with the known dependencies between recruitment of specific proteins into the mature ribosome. These findings are consistent in two independent experiments. We have further identified regulatory elements correlated with the time of regulation, including a possible dependence of expression time on the position of the RAP1 binding site within the 5’UTR.


2019 ◽  
Author(s):  
Alison Mullis ◽  
Zhaolian Lu ◽  
Yu Zhan ◽  
Tzi-Yuan Wang ◽  
Judith Rodriguez ◽  
...  

ABSTRACTRibosomal proteins (RPs) genes encode structure components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78-80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. How the RP genes were duplicated and maintained in these fungal species, and their functional significance remains unresolved. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages. The RP duplicates in two of them, budding yeast and Mucoromycota, were mainly created by whole genome duplication (WGD) events. However, in fission yeasts, duplicate RP genes were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs in each species have been homogenized by repeated gene conversion, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased RP transcription abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consuming sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.


2019 ◽  
Author(s):  
Michal Levin ◽  
Harel Zalts ◽  
Natalia Mostov ◽  
Tamar Hashimshony ◽  
Itai Yanai

AbstractAlternative polyadenylation (APA) leads to multiple transcripts from the same gene, yet their distinct functional attributes remain largely unknown. Here, we introduce APA-seq to detect the expression levels of APA isoforms from 3’-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. Applying APA-seq, we detected the expression levels of APA isoforms from RNA-Seq data of single C. elegans embryos, and studied the patterns of 3’ UTR isoform expression throughout embryogenesis. We found that global changes in APA usage demarcate developmental stages, suggesting a requirement for distinct 3’ UTR isoforms throughout embryogenesis. We distinguished two classes of genes, depending upon the correlation between the temporal profiles of their isoforms: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. This led us to hypothesize that variants produced with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3’ UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3’ UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.


2021 ◽  
Vol 15 (4) ◽  
pp. 478-490
Author(s):  
Xianliang Li ◽  
Hang Liu ◽  
Zhichang Zhao

The xyloglucan Endotransglucosylase/hydrolase (XTH) genes are proposed to encode enzymes responsible for cleaving and reattaching xyloglucan polymers. Despite prior identification of the XTH gene family in Arabidopsis and rice, the XTH family in upland cotton, a tetraploid plant whose fiber cell is an excellent model for the study of plant cell elongation, is yet uncharacterized. In this study, iron tetroxide based magnetic nanobead (Fe3O4 NPs) was successfully prepared and applied to extract xyloglucan endoglucosidase/hydrolase genes. Analysis of the genes can provide insight into the evolutionary significance and function of the XTH gene family. A total of 41 XTH genes found by searching the phytozomev 10 database were classified into three groups based on their phylogeny and the motifs of individual genes. The 25 and 5 GhXTH genes occurred as clusters resulting from the segmental and tandem duplication. More frequent duplication events in cotton contributed to the expansion of the family. Global microarray analysis of GhXTH gene expression in cotton fibers showed that 18 GhXTH genes could be divided into two clusters and four subclusters based on their expression patterns. Accumulated expression levels were relatively high at the elongation stages of the cotton fibers, suggesting that cotton fiber elongation requires high amounts of the GhXTH protein. The expression profiles of GhXTH3 and GhXTH4 showed by quantitative realtime PCR were similar to those determined by microarray. Additionally, the expression levels of GhXTH3 and GhXTH4 in Gossypium barbadense were higher than those in Gossypium hirsutum at developmental stages, indicating that expression levels of GhXTH3 and GhXTH4 in fibers varied among cultivars differing in fiber length.


2015 ◽  
Vol 9 ◽  
pp. BBI.S20751 ◽  
Author(s):  
Stefan Simm ◽  
Sotirios Fragkostefanakis ◽  
Puneet Paul ◽  
Mario Keller ◽  
Jens Einloft ◽  
...  

Ribosome biogenesis involves a large inventory of proteinaceous and RNA cofactors. More than 250 ribosome biogenesis factors (RBFs) have been described in yeast. These factors are involved in multiple aspects like rRNA processing, folding, and modification as well as in ribosomal protein (RP) assembly. Considering the importance of RBFs for particular developmental processes, we examined the complexity of RBF and RP (co-)orthologs by bioinformatic assignment in 14 different plant species and expression profiling in the model crop Solanum lycopersicum. Assigning (co-)orthologs to each RBF revealed that at least 25% of all predicted RBFs are encoded by more than one gene. At first we realized that the occurrence of multiple RBF co-orthologs is not globally correlated to the existence of multiple RP co-orthologs. The transcript abundance of genes coding for predicted RBFs and RPs in leaves and anthers of S. lycopersicum was determined by next generation sequencing (NGS). In combination with existing expression profiles, we can conclude that co-orthologs of RBFs by large account for a preferential function in different tissue or at distinct developmental stages. This notion is supported by the differential expression of selected RBFs during male gametophyte development. In addition, co-regulated clusters of RBF and RP coding genes have been observed. The relevance of these results is discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Edmund Ui-Hang Sim ◽  
Stella Li-Li Chan ◽  
Kher-Lee Ng ◽  
Choon-Weng Lee ◽  
Kumaran Narayanan

Apart from their canonical role in ribosome biogenesis, there is increasing evidence of ribosomal protein genes’ involvement in various cancers. A previous study by us revealed significant differential expression of three ribosomal protein genes (RPeL27, RPeL41, and RPeL43) between cell lines derived from tumor and normal nasopharyngeal epithelium. However, the results therein were based on a semiquantitative assay, thus preliminary in nature. Herein, we provide findings of a deeper analysis of these three genes in the context to nasopharyngeal carcinoma (NPC) tumorigenesis. Their expression patterns were analyzed in a more quantitative manner at transcript level. Their protein expression levels were also investigated. We showed results that are contrary to previous report. Rather than downregulation, these genes were significantly overexpressed in NPC cell lines compared to normal control at both transcript and protein levels. Nevertheless, their association with NPC has been established. Immunoprecipitation pulldown assays indicate the plausible interaction of either RPeL27 or RPeL43 with POTEE/TUBA1A and ACTB/ACTBL2 complexes. In addition, RPeL43 is shown to bind with MRAS and EIF2S1 proteins in a NPC cell line (HK1). Our findings support RPeL27, RPeL41, and RPeL43 as potential markers of NPC and provide insights into the interaction targets of RPeL27 and RPeL43 proteins.


1998 ◽  
Vol 45 (4) ◽  
pp. 929-934 ◽  
Author(s):  
J A Rafalski ◽  
M Hanafey ◽  
G H Miao ◽  
A Ching ◽  
J M Lee ◽  
...  

Public and private EST (Expressed Sequence Tag) programs provide access to a large number of ESTs from a number of plant species, including Arabidopsis, corn, soybean, rice, wheat. In addition to the homology of each EST to genes in GenBank, information about homology to all other ESTs in the data base can be obtained. To estimate expression levels of genes represented in the DuPont EST data base we count the number of times each gene has been seen in different cDNA libraries, from different tissues, developmental stages or induction conditions. This quantitation of message levels is quite accurate for highly expressed messages and, unlike conventional Northern blots, allows comparison of expression levels between different genes. Lists of most highly expresses genes in different libraries can be compiled. Also, if EST data is available for cDNA libraries derived from different developmental stages, gene expression profiles across development can be assembled. We present an example of such a profile for soybean seed development. Gene expression data obtained from Electronic Northern analysis can be confirmed and extended beyond the realm of highly expressed genes by using high density DNA arrays. The ESTs identified as interesting can be arrayed on nylon or glass and probed with total labeled cDNA first strand from the tissue of interest. Two-color fluorescent labeling allows accurate mRNA ratio measurements. We are currently using the DNA array technology to study chemical induction of gene expression and the biosynthesis of oil, carbohydrate and protein in developing seeds.


Author(s):  
David Shore ◽  
Sevil Zencir ◽  
Benjamin Albert

Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3641-3641
Author(s):  
Andrea Pellagatti ◽  
Eva Hellström-Lindberg ◽  
Aristoteles Giagounidis ◽  
Janet Perry ◽  
Luca Malcovati ◽  
...  

Abstract The del(5q) is the most commonly reported deletion in de novo MDS and is found in 10–15% of all patients. Our group demonstrated haploinsufficiency for the ribosomal gene RPS14, which is required for the maturation of 40S ribosomal subunits and maps to the commonly deleted region in patients with the 5q- syndrome (Boultwood et al, Br J Haematol2007, 139:578–89). Haploinsufficiency of RPS14 has been shown to be the mechanism underlying the erythroid defect in this disorder (Ebert et al, Nature2008, 451:335–9). We have recently shown that haploinsufficiency of RPS14 in patients with the 5q- syndrome is associated with deregulated expression of ribosomal- and translation-related genes, suggesting that the 5q- syndrome represents a disorder of aberrant ribosome biogenesis (Pellagatti et al, Br J Haematol2008, 142:57–64). The del(5q) in the 5q-syndrome is cytogenetically indistinguishable from the del(5q) found in other MDS and in the vast majority of these patients the CDR of the 5q- syndrome will be deleted (and therefore one allele of RPS14 will be lost). We are investigating the hypothesis that haploinsufficiency of RPS14 and consequent deregulated ribosome biogenesis may also play a role in the pathogenesis of non-5q- syndrome MDS patients with del(5q). Using Affymetrix U133 Plus2.0 arrays, we have studied the expression profiles of a group of 579 ribosomal- and translation-related genes in the CD34+ cells of 21 non-5q- syndrome MDS patients with del(5q) and 95 MDS patients without del(5q). 168 of 579 ribosomal-and translation-related probe sets were found to be significantly differentially expressed between these two groups, with approximately 90% of these showing lower expression levels in patients with del(5q). Hierarchical clustering using this set of 168 genes gave a good separation between patients with and without the del(5q). RPS14 was one of the most significant differentially expressed genes, with lower expression levels in patients with del(5q) confirming its haploinsufficient status in these patients. Other significant differentially expressed genes include the ribosomal protein RPL22L1, and the translation initiation factors EIF4EBP3 and EIF4B. Interestingly, when samples from 16 patients with 5q- syndrome were included in the analysis, hierarchical clustering using significantly differentially expressed ribosomal- and translation-related genes showed that most patients with 5q- syndrome and most patients with del(5q) clustered together. We are currently using polysome profile analysis on bone marrow cells to examine the levels of the 40S ribosomal subunit in patients with del(5q) and without del(5q). Our results support the hypothesis that haploinsufficiency of RPS14 and deregulation of ribosomal- and translation-related genes contribute to disease pathogenesis in MDS patients with del(5q). An exciting possibility is that other MDS with the del(5q) and the 5q- syndrome share a related molecular basis in that they are all disorders of defective ribosomal biogenesis.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1752
Author(s):  
Luiz Augusto Bovolenta ◽  
Danillo Pinhal ◽  
Marcio Luis Acencio ◽  
Arthur Casulli de Oliveira ◽  
Simon Moxon ◽  
...  

Nile tilapia is the third most cultivated fish worldwide and a novel model species for evolutionary studies. Aiming to improve productivity and contribute to the selection of traits of economic impact, biotechnological approaches have been intensively applied to species enhancement. In this sense, recent studies have focused on the multiple roles played by microRNAs (miRNAs) in the post-transcriptional regulation of protein-coding genes involved in the emergence of phenotypes with relevance for aquaculture. However, there is still a growing demand for a reference resource dedicated to integrating Nile Tilapia miRNA information, obtained from both experimental and in silico approaches, and facilitating the analysis and interpretation of RNA sequencing data. Here, we present an open repository dedicated to Nile Tilapia miRNAs: the “miRTil database”. The database stores data on 734 mature miRNAs identified in 11 distinct tissues and five key developmental stages. The database provides detailed information about miRNA structure, genomic context, predicted targets, expression profiles, and relative 5p/3p arm usage. Additionally, miRTil also includes a comprehensive pre-computed miRNA-target interaction network containing 4936 targets and 19,580 interactions.


Sign in / Sign up

Export Citation Format

Share Document