scholarly journals Protein Synthesis by Day 16 Bovine Conceptuses during the Time of Maternal Recognition of Pregnancy

2020 ◽  
Vol 21 (8) ◽  
pp. 2870 ◽  
Author(s):  
Irene Malo Estepa ◽  
Haidee Tinning ◽  
Elton Jóse Rosas Vasconcelos ◽  
Beatriz Fernandez-Fuertes ◽  
José María Sánchez ◽  
...  

Interferon Tau (IFNT), the conceptus-derived pregnancy recognition signal in cattle, significantly modifies the transcriptome of the endometrium. However, the endometrium also responds to IFNT-independent conceptus-derived products. The aim of this study was to determine what proteins are produced by the bovine conceptus that may facilitate the pregnancy recognition process in cattle. We analysed by mass spectrometry the proteins present in conceptus-conditioned media (CCM) after 6 h culture of Day 16 bovine conceptuses (n = 8) in SILAC media (arginine- and lysine-depleted media supplemented with heavy isotopes) and the protein content of extracellular vesicles (EVs) isolated from uterine luminal fluid (ULF) of Day 16 pregnant (n = 7) and cyclic (n = 6) cross-bred heifers on day 16. In total, 11,122 proteins were identified in the CCM. Of these, 5.95% (662) had peptides with heavy labelled amino acids, i.e., de novo synthesised by the conceptuses. None of these proteins were detected in the EVs isolated from ULF. Pregnancy-associated glycoprotein 11, Trophoblast Kunitz domain protein 1 and DExD-Box Helicase 39A were de novo produced and present in the CCM from all conceptuses and in previously published CCM data following 6 and 24 h. A total of 463 proteins were present in the CCM from all the conceptuses in the present study, and after 6 and 24 h culture in a previous study, while expression of their transcripts was not detected in endometrium indicating that they are likely conceptus-derived. Of the proteins present in the EVs, 67 were uniquely identified in ULF from pregnant heifers; 35 of these had been previously reported in CCM from Day 16 conceptuses. This study has narrowed a set of conceptus-derived proteins that may be involved in EV-mediated IFNT-independent embryo–maternal communication during pregnancy recognition in cattle.

1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pegah Bagheri ◽  
Khang Hoang ◽  
Anthony A. Fung ◽  
Sahran Hussain ◽  
Lingyan Shi

Oxidative imbalance plays an essential role in the progression of many diseases that include cancer and neurodegenerative diseases. Aromatic amino acids (AAA) such as phenylalanine and tryptophan have the capability of escalating oxidative stress because of their involvement in the production of Reactive Oxygen Species (ROS). Here, we use D2O (heavy water) probed stimulated Raman scattering microscopy (DO-SRS) and two Photon Excitation Fluorescence (2PEF) microscopy as a multimodal imaging approach to visualize metabolic changes in HeLa cells under excess AAA such as phenylalanine or trytophan in culture media. The cellular spatial distribution of de novo lipogenesis, new protein synthesis, NADH, Flavin, unsaturated lipids, and saturated lipids were all imaged and quantified in this experiment. Our studies reveal ∼10% increase in de novo lipogenesis and the ratio of NADH to flavin, and ∼50% increase of the ratio of unsaturated lipids to saturated lipid in cells treated with excess phenylalanine or trytophan. In contrast, these cells exhibited a decrease in the protein synthesis rate by ∼10% under these AAA treatments. The cellular metabolic activities of these biomolecules are indicators of elevated oxidative stress and mitochondrial dysfunction. Furthermore, 3D reconstruction images of lipid droplets were acquired and quantified to observe their spatial distribution around cells’ nuceli under different AAA culture media. We observed a higher number of lipid droplets in excess AAA conditions. Our study showcases that DO-SRS imaging can be used to quantitatively study how excess AAA regulates metabolic activities of cells with subcellular resolution in situ.


1999 ◽  
Vol 1999 ◽  
pp. 212-212 ◽  
Author(s):  
C. Atasoglu ◽  
C.J. Newbold ◽  
R.J. Wallace

Ammonia is thought to be the main source of nitrogen for protein synthesis by the rumen microorganisms, but peptides and amino acids derived from protein degradation are also incorporated into microbial protein. Recent experiments carried out by Atasogluet al.(1998) demonstrated that preformed amino acids decrease the uptake of ammonia into microbial protein and microbial amino acids in a concentration-dependent manner. However, little is known about how rumen ammonia concentrations affect ammonia uptake into microbial protein. The present study was undertaken to determine the influence of rumen ammonia concentrations on ammonia incorporation andde novosynthesis of individual amino acids by the mixed rumen microorganismsin vitro.


2001 ◽  
Vol 26 (2) ◽  
pp. 443-446 ◽  
Author(s):  
D.G. Morris ◽  
P. Humpherson ◽  
H.J. Leese ◽  
J.M. Sreenan

AbstractThere is no information on the metabolism of the cattle embryo during the period from day 8 to 16 a period of greatest embryonic loss. In this study the rate of protein synthesis and phosphorylation was measured in 13 to 15 day old cattle embryos. The rate of glucose utilisation and amino acid uptake/efflux by day 14 to 16 embryos was also measured. Protein synthesis and phosphorylation activity when expressed per unit of protein decreased with increasing embryo size and age. Similarly the rate of glucose utilisation was greatest for the earlier day 14 embryos. Embryos differed in their requirement for different amino acids. The pattern of uptake/efflux was similar to that of the earlier day 7 embryo. This study suggests that the metabolic rate of cattle embryos expressed per unit of protein content tends to decrease with increasing age and size from the initial burst of activity at day 13 around the time that expansion of the embryo begins.


1983 ◽  
Vol 96 (6) ◽  
pp. 1586-1591 ◽  
Author(s):  
J M Besterman ◽  
J A Airhart ◽  
R B Low ◽  
D E Rannels

Intracellular degradation of exogenous (serum) proteins provides a source of amino acids for cellular protein synthesis. Pinocytosis serves as the mechanism for delivering exogenous protein to the lysosomes, the major site of intracellular degradation of exogenous protein. To determine whether the availability of extracellular free amino acids altered pinocytic function, we incubated monolayers of pulmonary alveolar macrophages with the fluid-phase marker, [14C]sucrose, and we dissected the pinocytic process by kinetic analysis. Additionally, intracellular degradation of endogenous and exogenous protein was monitored by measuring phenylalanine released from the cell monolayers in the presence of cycloheximide. Results revealed that in response to a subphysiological level of essential amino acids or to amino acid deprivation, (a) the rate of fluid-phase pinocytosis increased in such a manner as to preferentially increase both delivery to and size of an intracellular compartment believed to be the lysosomes, (b) the degradation of exogenously supplied albumin increased, and (c) the fraction of phenylalanine derived from degradation of exogenous albumin and reutilized for de novo protein synthesis increased. Thus, modulation of the pinosome-lysosome pathway may represent a homeostatic mechanism sensitive to the availability of extracellular free amino acids.


1995 ◽  
Vol 268 (1) ◽  
pp. E75-E84 ◽  
Author(s):  
G. Biolo ◽  
R. Y. Fleming ◽  
S. P. Maggi ◽  
R. R. Wolfe

We have used stable isotopic tracers of amino acids to measure in vivo transmembrane transport of phenylalanine, leucine, lysine, alanine, and glutamine as well as the rates of intracellular amino acid appearance from proteolysis, de novo synthesis, and disappearance to protein synthesis in human skeletal muscle. Calculations were based on data obtained by the arteriovenous catheterization of the femoral vessels and muscle biopsy. We found that the fractional contribution of transport from the bloodstream to the total intracellular amino acid appearance depends on the individual amino acid, varying between 0.63 +/- 0.02 for phenylalanine and 0.22 +/- 0.02 for alanine. Rates of alanine and glutamine de novo synthesis were approximately eight and five times their rate of appearance from protein breakdown, respectively. The model-derived rate of protein synthesis was highly correlated with the same value calculated by means of the tracer incorporation technique. Furthermore, amino acid transport rates were in the range expected from literature values. Consequently, we conclude that our new model provides a valid means of quantifying the important aspects of protein synthesis, breakdown, and amino acid transport in human subjects.


2020 ◽  
Author(s):  
Anllely Fernández ◽  
Maxs Méndez ◽  
Octavia Santis ◽  
Katherine Corvalan ◽  
Maria-Teresa Gomez ◽  
...  

ABSTRACTRecent studies have described a new mechanism of intercellular communication mediated by various types of extracellular vesicles (EVs). In particular, exosomes are small EVs (sEVs) released to the extracellular environment by the fusion of the endosomal pathway-related multivesicular bodies (containing intraluminal vesicles) with the plasma membrane. sEVs contain a molecular cargo consisting of lipids, proteins, and nucleic acids. However, the loading mechanisms for this complex molecular cargo have not yet been completely elucidated. In that line, the post translational modification SUMO (Small Ubiquitin-like Modifier) has been shown to impact the incorporation of select proteins into sEVs. We therefore decided to investigate whether SUMOylation is a mechanism that defines protein loading to sEVs. In order to investigate the role of SUMOylation in cargo loading into sEVs, we utilized astrocytes, an essential cell type of the central nervous system with homeostatic functions, to study the impact of SUMOylation on the protein cargo of sEVs. Following SUMO overexpression, achieved by transfection of SUMO plasmids or experimental conditions that modulate SUMOylation in primary astrocyte cultures, we detected proteins related to cell division, translation, and transcription by mass-spectrometry. In astrocyte cultures treated with the general SUMOylation inhibitor 2-D08 (2′,3′,4′-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one) we observed an increase in the number of sEVs and a decreased amount of protein cargo within them. In turn, in astrocytes treated with the stress hormone corticosterone, we found an increase of SUMO-2 conjugated proteins and sEVs from these cells contained an augmented protein cargo. In this case, the proteins detected with mass-spectrometry were mostly proteins related to protein translation. To test whether astrocyte-derived sEVs obtained in these experimental conditions could modulate protein synthesis in target cells, we incubated primary neurons with astrocyte-derived sEVs. sEVs from corticosterone-treated astrocytes stimulated protein synthesis while no difference was found with sEVs derived from 2-D08-treated astrocytes. Our results show that SUMO conjugation plays a fundamental role in defining the protein cargo of sEVs impacting the physiological function of target cells.


2008 ◽  
Vol 294 (2) ◽  
pp. E475-E479 ◽  
Author(s):  
Mahroukh Rafii ◽  
Jane M. McKenzie ◽  
Susan A. Roberts ◽  
George Steiner ◽  
Ronald O. Ball ◽  
...  

Phenylalanine hydroxylation is necessary for the conversion of phenylalanine to tyrosine and disposal of excess phenylalanine. Studies of in vivo regulation of phenylalanine hydroxylation suffer from the lack of a method to determine intrahepatocyte enrichment of phenylalanine and tyrosine. apoB-100, a hepatic export protein, is synthesized from intrahepatocyte amino acids. We designed an in vivo multi-isotope study, [15N]phenylalanine and [2H2]tyrosine to determine rates of phenylalanine hydroxylation from plasma enrichments in free amino acids and apoB-100. For independent verification of apoB-100 as a reflection of enrichment in the intrahepatocyte pool, [1-13C]lysine was used as an indicator amino acid (IAA) to measure in vivo changes in protein synthesis in response to tyrosine supplementation. Adult men ( n = 6) were fed an amino acid-based diet with low phenylalanine (9 mg·kg−1·day−1, 4.54 μmol·kg−1·,h−1) and seven graded intakes of tyrosine from 2.5 (deficient) to 12.5 (excess) mg·kg−1·day−1. Gas chromatography-quadrupole mass spectrometry did not detect any tracer in apoB-100 tyrosine. A new and more sensitive method to measure label enrichment in proteins using isotope ratio mass spectrometry demonstrated that phenylalanine hydroxylation measured in apoB-100 decreased linearly in response to increasing tyrosine intake and reached a break point at 6.8 mg·kg−1·day−1. IAA oxidation decreased with increased tyrosine intake and reached a break point at 6.0 mg·kg−1·day−1. We conclude: apoB-100 is an accurate and useful measure of changes in phenylalanine hydroxylation; the synthesis of tyrosine via phenylalanine hydroxylation is regulated to meet the needs for protein synthesis; and that plasma phenylalanine does not reflect changes in protein synthesis.


1958 ◽  
Vol 149 (936) ◽  
pp. 392-400 ◽  

The mammary gland in full lactation had for long been recognized as an ideal system for the study of the biosynthesis of protein. The discoveries during the last 5 years of the incorporation of labelled amino acids into the microsomes of cell homogenates and of other reactions of amino acids which might be on the pathway to protein synthesis, encouraged us to study the fate of amino acids in various systems prepared from mammary cells. De novo protein synthesis had not yet been proved in any system which contained no intact cells. So far no net increase in any defined protein fraction during incubations has been found or indeed looked for in our experiments. Naturally one hopes that such studies of the fate of labelled amino acids in cell-free preparations will reveal the detail of enzymic reactions which will prove to be part of the mechanisms of protein biosynthesis. Three types of reactions of amino acids in cell-free preparations from homogenates of many tissues have been studied most extensively. (1) The acyl activation of amino acids to form amino acid-acid adenylates in the presence of ATP and ‘activating enzymes’. (2) The formation of compounds of cell sap-ribonucleic acid ( SRN A ) with amino acids in the presence of ATP and ‘activating enzymes’. (3) The incorporation of amino acids into intracellular particles either from free amino acid or by transfer from amino-acid- SRN A compounds in the presence of ATP , guanosine triphosphate ( GTP ) and ‘activating enzymes’. In this paper we are giving a survey of the results of studies on these three types of reactions in systems prepared from mammary tissue and we are relating these to results obtained with other systems elsewhere. Some comparative studies of the incorporation of labelled amino acids into protein fractions of intact mammary cells (minced tissue) are also presented. All the original results given here were obtained from experiments with guinea-pig mammary gland preparations from animals 2 to 6 days after parturition. Experimental detail will be reported elsewhere.


Sign in / Sign up

Export Citation Format

Share Document