scholarly journals Over-Expressing TaSPA-B Reduces Prolamin and Starch Accumulation in Wheat (Triticum aestivum L.) Grains

2020 ◽  
Vol 21 (9) ◽  
pp. 3257 ◽  
Author(s):  
Dandan Guo ◽  
Qiling Hou ◽  
Runqi Zhang ◽  
Hongyao Lou ◽  
Yinghui Li ◽  
...  

Starch and prolamin composition and content are important indexes for determining the processing and nutritional quality of wheat (Triticum aestivum L.) grains. Several transcription factors (TFs) regulate gene expression during starch and protein biosynthesis in wheat. Storage protein activator (TaSPA), a member of the basic leucine zipper (bZIP) family, has been reported to activate glutenin genes and is correlated to starch synthesis related genes. In this study, we generated TaSPA-B overexpressing (OE) transgenic wheat lines. Compared with wild-type (WT) plants, the starch content was slightly reduced and starch granules exhibited a more polarized distribution in the TaSPA-B OE lines. Moreover, glutenin and ω- gliadin contents were significantly reduced, with lower expression levels of related genes (e.g., By15, Dx2, and ω-1,2 gliadin gene). RNA-seq analysis identified 2023 differentially expressed genes (DEGs). The low expression of some DEGs (e.g., SUSase, ADPase, Pho1, Waxy, SBE, SSI, and SS II a) might explain the reduction of starch contents. Some TFs involved in glutenin and starch synthesis might be regulated by TaSPA-B, for example, TaPBF was reduced in TaSPA-B OE-3 lines. In addition, dual-luciferase reporter assay indicated that both TaSPA-B and TaPBF could transactivate the promoter of ω-1,2 gliadin gene. These results suggest that TaSPA-B regulates a complex gene network and plays an important role in starch and protein biosynthesis in wheat.

Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 729-734 ◽  
Author(s):  
R C Leach ◽  
I S Dundas ◽  
A Houben

The physical length of the rye segment of a 4BS.4BL–5RL translocation derived from the Cornell Wheat Selection 82a1-2-4-7 in a Triticum aestivum 'Chinese Spring' background was measured using genomic in situ hybridization (GISH) and found to be 16% of the long arm. The size of this translocation was similar to previously published GISH measurements of another 4BS.4BL–5RL translocation in a Triticum aestivum 'Viking' wheat background. Molecular maps of both 4BS.4BL–5RL translocations for 2 different wheat backgrounds were developed using RFLP analysis. The locations of the translocation breakpoints of the 2 4BS.4BL–5RL translocations were similar even though they arose in different populations. This suggests a unique property of the region at or near the translocation breakpoint that could be associated with their similarity and spontaneous formation. These segments of rye chromosome 5 also contain a gene for copper efficiency that improves the wheat's ability to cope with low-copper soils. Genetic markers in these maps can also be used to screen for copper efficiency in bread wheat lines derived from the Cornell Wheat Selection 82a1 2-4-7.Key words: Triticum aestivum, wheat–rye translocation, homoeologous group 4, homoeologous group 5, GISH, comparative map, copper efficiency, hairy peduncle.


2007 ◽  
Vol 408 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Ulrike Böer ◽  
Julia Eglins ◽  
Doris Krause ◽  
Susanne Schnell ◽  
Christof Schöfl ◽  
...  

The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a transactivation domain, in which Ser119 is phosphorylated upon activation, and a bZip (basic leucine zipper domain). The bZip is involved in CREB dimerization and DNA-binding, but also contributes to CREB transactivation by recruiting the coactivator TORC (transducer of regulated CREB). In the present study, the effect of lithium on CRE (cAMP response element)/CREB-directed gene transcription was investigated. Electrically excitable cells were transfected with CRE/CREB-driven luciferase reporter genes. LiCl (6 mM or higher) induced an up to 4.7-fold increase in 8-bromo-cAMP-stimulated CRE/CREB-directed transcription. This increase was not due to enhanced Ser119 phosphorylation or DNA-binding of CREB. Also, the known targets inositol monophosphatase and GSK3β (glycogen-synthase-kinase 3β) were not involved as specific GSK3β inhibitors and inositol replenishment did not mimic and abolish respectively the effect of lithium. However, lithium no longer enhanced CREB activity when the CREB-bZip was deleted or the TORC-binding site inside the CREB-bZip was specifically mutated (CREB-R300A). Otherwise, TORC overexpression conferred lithium responsiveness on CREB-bZip or the CRE-containing truncated rat somatostatin promoter. This indicates that lithium enhances cAMP-induced CRE/CREB-directed transcription, conferred by TORC on the CREB-bZip. We thus support the hypothesis that lithium salts modulate CRE/CREB-dependent gene transcription and suggest the CREB coactivator TORC as a new molecular target of lithium.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yan Zi ◽  
Jinfeng Ding ◽  
Jianmin Song ◽  
Gavin Humphreys ◽  
Yongxin Peng ◽  
...  

Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 525-529 ◽  
Author(s):  
V. D. Keppenne ◽  
P. S. Baenziger

The blue aleurone trait has been suggested as a useful genetic marker in wheat (Triticum aestivum L.). However, little information is available on its transmission in diverse backgrounds and on its use to identify hybrid seed. UC66049, a hexaploid spring wheat with a spontaneous translocation that included the gene for the blue aleurone trait (Ba) from Agropyron elongatum (Host) P.B. (synonymous with Elytrigia pontica (Podp.) Holub), was crossed to seven wheat cultivars to test the transmission of the trait. UC66049 was crossed to male-sterile red wheat lines to evaluate the blue aleurone trait as a marker for confirming hybridity. Ba segregated as a dominant gene that was transmitted normally through the male and female gametes. For 6 of 7 crosses with diverse pedigrees, we experienced problems with misclassification of the aleurone color in the F2 seed generation, determined by the F3 seed family data. The blue aleurone trait is a good genetic marker; however, progeny testing may be needed to confirm the F2 genotypes in some environments or genetic backgrounds. Moreover, Ba is useful in determining the amount of controlled hybridity as opposed to self-fertility and (or) outcrossing in genetic male-sterile wheat lines. The use of Ba to confirm doubled haploidy was proposed.Key words: Agropyron elongatum, seed color, genetics, Triticum aestivum, Elytrigia pontica.


2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Wang Su ◽  
Guangji Ye ◽  
Yun Zhou ◽  
Jian Wang

ABSTRACT: Biosynthesis is the only source of potato starch which is an important raw material for food processing, modified starch and biomass energy. However, it is not clear about the evolution of starch synthesis with tuber development in potato. The present study evaluated the differences of starch synthesis and gelatinization properties of potato tubers with different starch content. Relative to cultivars of medium and low starch content, cultivars of high starch content showed significantly higher SBEII gene expression, AGPase and SSS enzyme activity, and total starch content after middle stage of starch accumulation, and had smaller average starch granule size during whole process of tuber development, and had higher pasting temperature before late stages of tuber growth, and had lower pasting temperature after middle stage of starch accumulation. Path analysis showed that, after middle stage of starch accumulation, effects on starch gelatinization of cultivars with high, medium and low starch content represented starch synthesis enzyme activity > starch accumulation > starch granule distribution > starch synthesis enzyme gene expression, starch synthesis enzyme gene expression > starch synthesis enzyme activity > starch accumulation > starch granule distribution, starch synthesis enzyme gene expression > starch granule distribution > starch synthesis enzyme activity > starch accumulation, respectively. In the study, phases existed in the starch biosynthesis of potato tuber, and the starch quality and its formation process were different among varieties with different starch content. The findings might contribute to starch application and potato industries.


2019 ◽  
Vol 20 (3) ◽  
pp. 483 ◽  
Author(s):  
Kangyong Zha ◽  
Haoxun Xie ◽  
Min Ge ◽  
Zimeng Wang ◽  
Yu Wang ◽  
...  

As major component in cereals grains, starch has been one of the most important carbohydrate consumed by a majority of world’s population. However, the molecular mechanism for regulation of biosynthesis of starch remains elusive. In the present study, ZmES22, encoding a MADS-type transcription factor, was modestly characterized from maize inbred line B73. ZmES22 exhibited high expression level in endosperm at 10 days after pollination (DAP) and peaked in endosperm at 20 DAP, indicating that ZmES22 was preferentially expressed in maize endosperm during active starch synthesis. Transient expression of ZmES22 in tobacco leaf revealed that ZmES22 protein located in nucleus. No transactivation activity could be detected for ZmES22 protein via yeast one-hybrid assay. Transformation of overexpressing plasmid 35S::ZmES22 into rice remarkedly reduced 1000-grain weight as well as the total starch content, while the soluble sugar was significantly higher in transgenic rice lines. Moreover, overexpressing ZmES22 reduced fractions of long branched starch. Scanning electron microscopy images of transverse sections of rice grains revealed that altered expression of ZmES22 also changed the morphology of starch granule from densely packed, polyhedral starch granules into loosely packed, spherical granules with larger spaces. Furthermore, RNA-seq results indicated that overexpressing ZmES22 could significantly influence mRNA expression levels of numerous key regulatory genes in starch synthesis pathway. Y1H assay illustrated that ZmES22 protein could bind to the promoter region of OsGIF1 and downregulate its mRNA expression during rice grain filling stages. These findings suggest that ZmES22 was a novel regulator during starch synthesis process in rice endosperm.


2015 ◽  
Vol 42 (1) ◽  
pp. 31 ◽  
Author(s):  
Masaki Okamura ◽  
Tatsuro Hirose ◽  
Yoichi Hashida ◽  
Ryu Ohsugi ◽  
Naohiro Aoki

In rice (Oryza sativa L.), tiller angle – defined as the angle between the main culm and its side tillers – is one of the important factors involved in light use efficiency. To clarify the relationship between tiller angle, gravitropism and stem-starch accumulation, we investigated the shoot gravitropic response of a low stem-starch rice mutant which lacks a large subunit of ADP-glucose pyrophosphorylase (AGP), called OsAGPL1 and exhibits relatively spread tiller angle. The insensitive gravitropic response exhibited by the mutant led us to the conclusion that insensitivity of gravitropism caused by stem-starch reduction splayed the tiller angle. Furthermore, since another AGP gene called OsAGPL3 was expressed at considerable levels in graviresponding sites, we generated a double mutant lacking both OsAGPL1 and OsAGPL3. The double mutant exhibited still lower stem-starch content, less sensitive gravitropic response and greater tiller angle spread than the single mutants. This indicated that the expansion of the tiller angle caused by the reduction in starch level was intense according to the extent of the reduction. We found there were no significant differences between the double mutant and wild-type plants in terms of dry matter production. These results provided new insight into the importance of stem-starch accumulation and ideal plant architecture.


2009 ◽  
Vol 23 (11) ◽  
pp. 1746-1757 ◽  
Author(s):  
Hyereen Kang ◽  
Yoon Suk Kim ◽  
Jesang Ko

Abstract The human leucine zipper protein (LZIP) is a basic leucine zipper transcription factor that is involved in leukocyte migration, tumor suppression, and endoplasmic reticulum stress-associated protein degradation. Although evidence suggests a diversity of roles for LZIP, its function is not fully understood, and the subcellular localization of LZIP is still controversial. We identified a novel isoform of LZIP and characterized its function in ligand-induced transactivation of the glucocorticoid receptor (GR) in COS-7 and HeLa cells. A novel isoform of human LZIP designated as “sLZIP” contains a deleted putative transmembrane domain (amino acids 229–245) of LZIP and consists of 345 amino acids. LZIP and sLZIP were ubiquitously expressed in a variety of cell lines and tissues, with LZIP being much more common. sLZIP was mainly localized in the nucleus, whereas LZIP was located in the cytoplasm. Unlike LZIP, sLZIP was not involved in the chemokine-mediated signal pathway. sLZIP recruited histone deacetylases (HDACs) to the promoter region of the mouse mammary tumor virus luciferase reporter gene and enhanced the activities of HDACs, resulting in suppression of expression of the GR target genes. Our findings suggest that sLZIP functions as a negative regulator in glucocorticoid-induced transcriptional activation of GR by recruitment and activation of HDACs.


Sign in / Sign up

Export Citation Format

Share Document