scholarly journals Cloning and Functional Analysis of Dwarf Gene Mini Plant 1 (MNP1) in Medicago truncatula

2020 ◽  
Vol 21 (14) ◽  
pp. 4968
Author(s):  
Shiqi Guo ◽  
Xiaojia Zhang ◽  
Quanzi Bai ◽  
Weiyue Zhao ◽  
Yuegenwang Fang ◽  
...  

Plant height is a vital agronomic trait that greatly determines crop yields because of the close relationship between plant height and lodging resistance. Legumes play a unique role in the worldwide agriculture; however, little attention has been given to the molecular basis of their height. Here, we characterized the first dwarf mutant mini plant 1 (mnp1) of the model legume plant Medicago truncatula. Our study found that both cell length and the cell number of internodes were reduced in a mnp1 mutant. Using the forward genetic screening and subsequent whole-genome resequencing approach, we cloned the MNP1 gene and found that it encodes a putative copalyl diphosphate synthase (CPS) implicated in the first step of gibberellin (GA) biosynthesis. MNP1 was highly homologous to Pisum sativum LS. The subcellular localization showed that MNP1 was located in the chloroplast. Further analysis indicated that GA3 could significantly restore the plant height of mnp1-1, and expression of MNP1 in a cps1 mutant of Arabidopsis partially rescued its mini-plant phenotype, indicating the conservation function of MNP1 in GA biosynthesis. Our results provide valuable information for understanding the genetic regulation of plant height in M. truncatula.

2020 ◽  
Vol 71 (20) ◽  
pp. 6355-6365
Author(s):  
Xiaojia Zhang ◽  
Liangliang He ◽  
Baolin Zhao ◽  
Shaoli Zhou ◽  
Youhan Li ◽  
...  

Abstract Optimizing plant architecture is an efficient approach for breeders to increase crop yields, and phytohormones such as gibberellins (GAs) play an important role in controlling growth. Medicago truncatula is a model legume species, but the molecular mechanisms underlying its architecture are largely unknown. In this study, we examined a tobacco retrotransposon Tnt1-tagged mutant collection of M. truncatula and identified dwarf and increased branching 1 (dib1), which exhibited extreme dwarfism and increased numbers of lateral branches. By analysis of the flanking sequences of Tnt1 insertions in different alleles of the tagged lines, we were able to clone DIB1. Linkage analysis and reverse screening of the flanking-sequence tags identified Medtr2g102570 as the gene corresponding to the DIB1 locus in the dib1 loss-of-function mutants. Phylogenetic analysis indicated that DIB1 was the ortholog of PsGA3ox1/Le in Pisum sativum. Expression analysis using a GUS-staining reporter line showed that DIB1 was expressed in the root apex, pods, and immature seeds. Endogenous GA4 concentrations were markedly decreased whilst some of representative GA biosynthetic enzymes were up-regulated in the dib1 mutant. In addition, exogenous application of GA3 rescued the dib1 mutant phenotypes. Overall, our results suggest that DIB1 controls plant height and axillary bud outgrowth via an influence on the biosynthesis of bioactive GAs. DIB1 could therefore be a good candidate gene for breeders to optimize plant architecture for crop improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wanying Li ◽  
Qingxia Ma ◽  
Pengcheng Yin ◽  
Jiangqi Wen ◽  
Yanxi Pei ◽  
...  

Plant height is an important agronomic trait that is closely related to biomass yield and crop production. Despite legumes comprise one of the largest monophyletic families that are second only to grasses in terms of economic and nutritional values, due to an ancient genome duplication event, most legume plants have complex genomes, thus the molecular mechanisms that determine plant height are less known in legumes. Here, we report the identification and characterization of MAIN STEM DWARF1 (MSD1), which is required for the plant height in the model legume Medicago truncatula. Loss of function of MSD1 leads to severely reduced main stem height but normal lateral branch elongation in M. truncatula. Histological analysis revealed that the msd1-1 main stem has shorter internodes with reduced cell size and number compared with the wild type, indicating that MSD1 affects cell elongation and cell proliferation. MSD1 encodes a putative GA 20-oxidase that is expressed at significantly higher levels in the main shoot apex than in the lateral shoot apices, suggesting that MSD1 expression is associated with its effect on the main stem elongation. UPLC-MS/MS analysis showed that GA9 and GA4, two identified products of the GA 20-oxidase, were severely reduced in msd1-1, and the dwarf phenotype of msd1-1 could be rescued by supplementation with gibberellic acid GA3, confirming that MSD1 functions as a biologically active GA 20-oxidase. Moreover, we found that disruption of either MtGA20ox7 or MtGA20ox8, homologs of MSD1, has little effects on the elongation of the main stem, while the msd1-1 mtga20ox7-1 mtga20ox8 triple mutants exhibits a severe short main shoot and lateral branches, as well as reduced leaf size, suggesting that MSD1 and its homologs MtGA20ox7 and MtGA20ox8, redundantly regulate M. truncatula shoot elongation and leaf development. Taken together, our findings demonstrate the molecular mechanism of MSD1-mediated regulation of main stem elongation in M. truncatula and provide insights into understanding the functional diversity of GA 20-oxidases in optimizing plant architecture in legumes.


2017 ◽  
Vol 43 (9) ◽  
pp. 1272 ◽  
Author(s):  
Yuan LU ◽  
Chao-Fan CUI ◽  
Ping HU ◽  
Pei-Du CHEN ◽  
Xue-Fang SHEN ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 312 ◽  
Author(s):  
Haibao Tang ◽  
Vivek Krishnakumar ◽  
Shelby Bidwell ◽  
Benjamin Rosen ◽  
Agnes Chan ◽  
...  

2001 ◽  
Vol 14 (12) ◽  
pp. 1364-1367 ◽  
Author(s):  
Kathryn A. VandenBosch ◽  
Julia Frugoli

At the 2nd Medicago meeting (a satellite of the 1999 IS-MPMI meeting in Amsterdam), investigators perceived a need for standardization of genetic nomenclature in Medicago truncatula, due to the rapid growth of research on this species in the past few years. Establishment of such standards grew out of discussions begun at this meeting and continued electronically throughout the M. truncatula community. The proposed standards presented here are the consensus results of those discussions. In addition to standards for gene nomenclature, a method for community governance and a website for cataloging gene names and submitting new ones are presented. The purpose of implementing these guidelines is to help maintain consistency in the literature, to avoid redundancy, to contribute to the accuracy of databases, and, in general, to aid the international collaborations that have made M. truncatula a model system for legume biology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noriyoshi Isozumi ◽  
Yuya Masubuchi ◽  
Tomohiro Imamura ◽  
Masashi Mori ◽  
Hironori Koga ◽  
...  

AbstractA model legume, Medicago truncatula, has over 600 nodule-specific cysteine-rich (NCR) peptides required for symbiosis with rhizobia. Among them, NCR169, an essential factor for establishing symbiosis, has four cysteine residues that are indispensable for its function. However, knowledge of NCR169 structure and mechanism of action is still lacking. In this study, we solved two NMR structures of NCR169 caused by different disulfide linkage patterns. We show that both structures have a consensus C-terminal β-sheet attached to an extended N-terminal region with dissimilar features; one moves widely, whereas the other is relatively stapled. We further revealed that the disulfide bonds of NCR169 contribute to its structural stability and solubility. Regarding the function, one of the NCR169 oxidized forms could bind to negatively charged bacterial phospholipids. Furthermore, the positively charged lysine-rich region of NCR169 may be responsible for its antimicrobial activity against Escherichia coli and Sinorhizobium meliloti. This active region was disordered even in the phospholipid bound state, suggesting that the disordered conformation of this region is key to its function. Morphological observations suggested the mechanism of action of NCR169 on bacteria. The present study on NCR169 provides new insights into the structure and function of NCR peptides.


2016 ◽  
Vol 81 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Elif Yüzbaşıoğlu ◽  
Eda Dalyan ◽  
Abdülrezzak Memon ◽  
Gül Öz ◽  
Bayram Yüksel

Author(s):  
Mannix Burns ◽  
Brendan Epstein ◽  
Liana Burghardt

Leguminous plants form symbiotic relationships with rhizobia. These nitrogen-fixing bacteria live in specialized root organs called nodules. While rhizobia form the most notable host relationship within root nodules, other bacterial endophytes also inhabit these root nodules and can influence host-rhizobia interactions as well as exert effects of their own, whether beneficial or detrimental. In this study, we investigate differences in nodule communities between genotypes (A17 and R108) of a single plant species, the model legume Medicago truncatula. While diversity of endophytes in nodules was similar across hosts, both nodule endophyte composition and gene functional groups differed. In contrast to the significant direct effect of host genotype, neither the presence nor identity of a host in the previous generation (either A17 or R108) had a significant effect on the nodule endophyte diversity or composition. However, whether or not a host was present altered gene functional groups. We conclude that genetic variation within a legume host species can play an important role in the establishment of nodule microbiomes. Further studies, including GWAS and functional assays, can open the door for engineering and optimizing nodule endophyte communities that promote growth or have other beneficial qualities.


Planta ◽  
2004 ◽  
Vol 220 (5) ◽  
pp. 696-707 ◽  
Author(s):  
Hideyuki Suzuki ◽  
M. S. Srinivasa Reddy ◽  
Marina Naoumkina ◽  
Naveed Aziz ◽  
Gregory D. May ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document