scholarly journals Roles of Membrane Domains in Integrin-Mediated Cell Adhesion

2020 ◽  
Vol 21 (15) ◽  
pp. 5531 ◽  
Author(s):  
Daniel Lietha ◽  
Tina Izard

The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.

1997 ◽  
Vol 110 (24) ◽  
pp. 3011-3018 ◽  
Author(s):  
A. Bretscher ◽  
D. Reczek ◽  
M. Berryman

The cortical cytoskeleton of eucaryotic cells provides structural support to the plasma membrane and also contributes to dynamic processes such as endocytosis, exocytosis, and transmembrane signaling pathways. The ERM (ezrin-radixin-moesin) family of proteins, of which ezrin is the best studied member, play structural and regulatory roles in the assembly and stabilization of specialized plasma membrane domains. Ezrin and related molecules are concentrated in surface projections such as microvilli and membrane ruffles where they link the microfilaments to the membrane. The present knowledge about ezrin is discussed from an historical perspective. Both biochemical and cell biological studies have revealed that ezrin can exist in a dormant conformation that requires activation to expose otherwise masked association sites. Current results indicate that activated ezrin monomers or head-to-tail oligomers associate directly with F-actin through a domain in its C terminus, and with the membrane through its N-terminal domain. The association of ezrin with transmembrane proteins can be direct, as in the case of CD44, or indirect through EBP50. Other binding partners, including the regulatory subunit of protein kinase A and rho-GDI, suggest that ezrin is an integral component of these signaling pathways. Although the membrane-cytoskeletal linking function is clear, further studies are necessary to reveal how the activation of ezrin and its association with different binding partners is regulated.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


2005 ◽  
Vol 169 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Daniela A. Sahlender ◽  
Rhys C. Roberts ◽  
Susan D. Arden ◽  
Giulietta Spudich ◽  
Marcus J. Taylor ◽  
...  

Myosin VI plays a role in the maintenance of Golgi morphology and in exocytosis. In a yeast 2-hybrid screen we identified optineurin as a binding partner for myosin VI at the Golgi complex and confirmed this interaction in a range of protein interaction studies. Both proteins colocalize at the Golgi complex and in vesicles at the plasma membrane. When optineurin is depleted from cells using RNA interference, myosin VI is lost from the Golgi complex, the Golgi is fragmented and exocytosis of vesicular stomatitis virus G-protein to the plasma membrane is dramatically reduced. Two further binding partners for optineurin have been identified: huntingtin and Rab8. We show that myosin VI and Rab8 colocalize around the Golgi complex and in vesicles at the plasma membrane and overexpression of constitutively active Rab8-Q67L recruits myosin VI onto Rab8-positive structures. These results show that optineurin links myosin VI to the Golgi complex and plays a central role in Golgi ribbon formation and exocytosis.


2002 ◽  
Vol 277 (33) ◽  
pp. 30325-30336
Author(s):  
Daniel Wüstner ◽  
Andreas Herrmann ◽  
Mingming Hao ◽  
Frederick R. Maxfield

1999 ◽  
Vol 40 (5) ◽  
pp. 881-892 ◽  
Author(s):  
Christina E. Gargiulo ◽  
Sarah M. Stuhlsatz-Krouper ◽  
Jean E. Schaffer

2004 ◽  
Vol 15 (11) ◽  
pp. 4949-4959 ◽  
Author(s):  
Akio Kihara ◽  
Yasuyuki Igarashi

Glycerophospholipids and sphingolipids are distributed asymmetrically between the two leaflets of the lipid bilayer. Recent studies revealed that certain P-type ATPases and ATP-binding cassette (ABC) transporters are involved in the inward movement (flip) and outward movement (flop) of glycerophospholipids, respectively. In this study of phytosphingosine (PHS)-resistant yeast mutants, we isolated mutants for PDR5, an ABC transporter involved in drug efflux as well as in the flop of phosphatidylethanolamine. The pdr5 mutants exhibited an increase in the efflux of sphingoid long-chain bases (LCBs). Genetic analysis revealed that the PHS-resistant phenotypes exhibited by the pdr5 mutants were dependent on Rsb1p, a putative LCB-specific transporter/translocase. We found that the expression of Rsb1p was increased in the pdr5 mutants. We also demonstrated that expression of RSB1 is under the control of the transcriptional factor Pdr1p. Expression of Rsb1p also was enhanced in mutants for the genes involved in the flip of glycerophospholipids, including ROS3, DNF1, and DNF2. These results suggest that altered glycerophospholipid asymmetry induces the expression of Rsb1p. Conversely, overexpression of Rsb1p resulted in increased flip and decreased flop of fluorescence-labeled glycerophospholipids. Thus, there seems to be cross talk between sphingolipids and glycerophospholipids in maintaining the functional lipid asymmetry of the plasma membrane.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2107-2117 ◽  
Author(s):  
Nicholas S. Tolwinski ◽  
Eric Wieschaus

Drosophila melanogaster Armadillo plays two distinct roles during development. It is a component of adherens junctions, and functions as a transcriptional activator in response to Wingless signaling. In the current model, Wingless signal causes stabilization of cytoplasmic Armadillo allowing it to enter the nucleus where it can activate transcription. However, the mechanism of nuclear import and export remains to be elucidated. In this study, we show that two gain-of-function alleles of Armadillo activate Wingless signaling by different mechanisms. The S10 allele was previously found to localize to the nucleus, where it activates transcription. In contrast, the ΔArm allele localizes to the plasma membrane, and forces endogenous Arm into the nucleus. Therefore, ΔArm is dependent on the presence of a functional endogenous allele of arm to activate transcription. We show that ΔArm may function by titrating Axin protein to the membrane, suggesting that it acts as a cytoplasmic anchor keeping Arm out of the nucleus. In axin mutants, Arm is localized to the nuclei. We find that nuclear retention is dependent on dTCF/Pangolin. This suggests that cellular distribution of Arm is controlled by an anchoring system, where various nuclear and cytoplasmic binding partners determine its localization.


Sign in / Sign up

Export Citation Format

Share Document