scholarly journals Photodynamic Activity of Tribenzoporphyrazines with Bulky Periphery against Wound Bacteria

2020 ◽  
Vol 21 (17) ◽  
pp. 6145 ◽  
Author(s):  
Magdalena Stolarska ◽  
Arleta Glowacka-Sobotta ◽  
Dariusz T. Mlynarczyk ◽  
Jolanta Dlugaszewska ◽  
Tomasz Goslinski ◽  
...  

Magnesium(II) tribenzoporphyrazines with phenoxybutylsulfanyl substituents were evaluated as photosensitizers in terms of their optical properties against wound bacteria. In the UV-vis spectra of analyzed tribenzoporphyrazines, typical absorption ranges were found. However, the emission properties were very weak, with fluorescence quantum yields in the range of only 0.002–0.051. What is important, they revealed moderate abilities to form singlet oxygen with the quantum yields up to 0.27. Under irradiation, the macrocycles decomposed via photobleaching mechanism with the quantum yields up to 8.64 × 10−5. The photokilling potential of tribenzoporphyrazines was assessed against Streptococcus pyogenes, Staphylococcus epidermidis, as well as various strains of Staphylococcus aureus, including methicillin-sensitive and-resistant bacteria. Both evaluated photosensitizers revealed high photodynamic potential against studied bacteria (>3 logs). S.aureus growth was reduced by over 5.9 log, methicillin-resistant S. aureus by 5.1 log, S.epidermidis by over 5.7 log, and S. pyogenes by over 4.7 log.

2020 ◽  
Author(s):  
Miguel Martí ◽  
Alberto Tuñón-Molina ◽  
Finn Lillelund Aachmann ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  
...  

AbstractFace masks have globally been accepted to be an effective protective tool to prevent bacterial and viral transmission, especially against indoor aerosol transmission. However, commercial face masks contain filters that are made of materials that are not capable of inactivating neither SARS-CoV-2 nor multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals can infect other people even if they wear them because some viable viral or bacterial loads can escape from the masks. Furthermore, viral or bacterial contact transmission can occur after touching the mask, which constitutes an increasing source of contaminated biological waste. Additionally, bacterial pathogens contribute to the SARS-CoV-2 mediated pneumonia disease complex and their resistance to antibiotics in pneumonia treatment is increasing at an alarming rate. In this regard, herein, we report the development of a novel protective non-woven face mask filter fabricated with a biofunctional coating of benzalkonium chloride that is capable of inactivating SARS-CoV-2 in one minute of contact, and the life-threatening methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Nonetheless, despite the results obtained, further studies are needed to ensure the safety and correct use of this technology for the mass production and commercialization of this broad-spectrum antimicrobial face mask filter. Our novel protective non-woven face mask filter would be useful for many health care workers and researchers working in this urgent and challenging field.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 207
Author(s):  
Miguel Martí ◽  
Alberto Tuñón-Molina ◽  
Finn Lillelund Aachmann ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  
...  

Face masks have globally been accepted to be an effective protective tool to prevent bacterial and viral transmission, especially against indoor aerosol transmission. However, commercial face masks contain filters that are made of materials that are not capable of inactivating either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals can infect other people even if they wear them because some viable viral or bacterial loads can escape from the masks. Furthermore, viral or bacterial contact transmission can occur after touching the mask, which constitutes an increasing source of contaminated biological waste. Additionally, bacterial pathogens contribute to the SARS-CoV-2-mediated pneumonia disease complex, and their resistance to antibiotics in pneumonia treatment is increasing at an alarming rate. In this regard, herein, we report the development of a non-woven face mask filter fabricated with a biofunctional coating of benzalkonium chloride that is capable of inactivating more than 99% of SARS-CoV-2 particles in one minute of contact, and the life-threatening methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis (normalized antibacterial halos of 0.52 ± 0.04 and 0.72 ± 0.04, respectively). Nonetheless, despite the results obtained, further studies are needed to ensure the safety and correct use of this technology for the mass production and commercialization of this broad-spectrum antimicrobial face mask filter. Our novel protective non-woven face mask filter would be useful for many healthcare workers and researchers working in this urgent and challenging field.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2083
Author(s):  
Tiago D. Martins ◽  
Eurico Lima ◽  
Renato E. Boto ◽  
Diana Ferreira ◽  
José R. Fernandes ◽  
...  

Photodynamic therapy is a medical modality developed for the treatment of several diseases of oncological and non-oncological etiology that requires the presence of a photosensitizer, light and molecular oxygen, which combined will trigger physicochemical reactions responsible for reactive oxygen species production. Given the scarcity of photosensitizers that exhibit desirable characteristics for its potential application in this therapeutic strategy, the main aims of this work were the study of the photophysical and photochemical properties and the photobiological activity of several dicyanomethylene squaraine cyanine dyes. Thus, herein, the study of their aggregation character, photobleaching and singlet oxygen production ability, and the further application of the previously synthesized dyes in Caco-2 and HepG2 cancer cell lines, to evaluate their phototherapeutic effects, are described. Dicyanomethylene squaraine dyes exhibited moderate light-stability and, despite the low singlet oxygen quantum yields, were a core of dyes that exhibited relevant in vitro photodynamic activity, as there was an evident increase in the toxicity of some of the tested dyes exclusive to radiation treatments.


2014 ◽  
Vol 5 (4) ◽  
pp. 389-395 ◽  
Author(s):  
S. Warrack ◽  
P. Panjikar ◽  
M. Duster ◽  
N. Safdar

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen of major public health importance. Colonisation precedes infection; thus reducing MRSA carriage may be of benefit for reducing infection. Probiotics represent a novel approach to reducing MRSA carriage. We undertook a pilot feasibility randomised controlled trial of the tolerability and acceptability of probiotics for reducing nasal and intestinal carriage of MRSA. In addition, subjects were screened for vancomycin-resistant enterocococci (VRE). Subjects with a history of MRSA were recruited from a large, academic medical center and randomised to take either a placebo or probiotic (Lactobacillus rhamnosus HN001). Subjects returned to the clinic after four weeks for further testing to determine adherence to the probiotic regimen and colonisation of MRSA. 48 subjects were enrolled and randomised. Nearly 25% were transplant recipients and 30% had diabetes. The probiotic was well tolerated in the study population though minor side effects, such as nausea and bloating, were observed. A majority of the subjects randomised to HN001 had good adherence to the regimen. At the four week time point among subjects randomised to the probiotic, MRSA was detected in 67 and 50% of subjects colonised in the nares and the gastrointestinal tract, respectively. Three subjects who initially tested positive for VRE were negative after four weeks of probiotic exposure. Probiotics were well tolerated in our study population of largely immunocompromised subjects with multiple comorbidities. Adherence to the intervention was good. Probiotics should be studied further for their potential to reduce colonisation by multidrug resistant bacteria.


2018 ◽  
Vol 22 (01n03) ◽  
pp. 77-87 ◽  
Author(s):  
Mohamad Albakour ◽  
Gülenay Tunç ◽  
Büşra Akyol ◽  
Sinem Tuncel Kostakoğlu ◽  
Savaş Berber ◽  
...  

In this work, Zn(II) phthalocyanine derivative (TTU-Pc) bearing 13-membered tetrathia macrocycles was synthesized, and the novel Zn(II) phthalocyanine derivative was fully characterized by elemental analysis and general spectroscopic methods such as MALDI-TOF mass, FT-IR, UV-vis and [Formula: see text]H-NMR. The synthesized phthalocyanine derivative has quite limited solubility in most of the common organic solvents. Fluorescence measurement was conducted for this Zn(II)phthalocyanine to estimate its fluorescence quantum yields. The singlet oxygen generation ability was also examined to investigate its photosensitizer properties. General trends were described for quantum yields of fluorescence, photodegradation and singlet oxygen quantum yields of this compound. The electrochemical properties of the molecule were investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). In addition, the lowest energy structure, the electronic structure and frontier molecular orbitals were calculated in DFT and the excitation spectrum was obtained by TDDFT calculations. We found that our computational and experimental results were in agreement.


1996 ◽  
Vol 40 (3) ◽  
pp. 799-801 ◽  
Author(s):  
G W Kaatz ◽  
S M Seo

The new oxazolidinone antimicrobial agents U100592 and U100766 demonstrated good in vitro inhibitory activity against clinical strains of Staphylococcus aureus and Staphylococcus epidermidis regardless of methicillin susceptibility. Both agents appeared bacteriostatic by time-kill analysis. Stable resistance to low multiples of the MIC of either drug could be produced only in methicillin-resistant S. aureus.


2011 ◽  
Vol 32 (11) ◽  
pp. 1057-1063 ◽  
Author(s):  
Nisha Nair ◽  
Ekaterina Kourbatova ◽  
Katharine Poole ◽  
Charmaine M. Huckabee ◽  
Patrick Murray ◽  
...  

Background.The multicenter, cluster-randomized Strategies to Reduce Transmission of Antimicrobial Resistant Bacteria in Intensive Care Units (STAR*ICU) trial was performed in 18 U.S. adult intensive care units (ICUs). It evaluated the effectiveness of infection control strategies to reduce the transmission of methicillin-resistant Staphylococcus aureus (MRSA) colonization and/or infection. Our study objective was to examine the molecular epidemiology of MRSA and assess the prevalence and risk factors for community acquired (CA)-MRSA genotype nasal carriage at the time of ICU admission.Methods.Selected MRSA isolates were subjected to molecular typing using pulsed-field gel electrophoresis.Results.Of 5,512 ICU patient admissions in the STAR*ICU trial during the intervention period, 626 (11%) had a nares sample culture result that was positive for MRSA. A total of 210 (34%) of 626 available isolates were selected for molecular typing by weighted random sampling. Of 210 patients, 123 (59%) were male; mean age was 63 years. Molecular typing revealed that 147 isolates (70%) were the USAIOO clone, 26 (12%) were USA300, 12 (6%) were USA500, 8 (4%) were USA800, and 17 (8%) were other MRSA genotypes. In a multivariate analysis, patients who were colonized with a CA-MRSA genotype (USA300, USA400, or USA1000) were less likely to have been hospitalized during the previous 12 months (PR [prevalence ratio], 0.39 [95% confidence interval (CI), 0.21-0.73]) and were less likely to be older (PR, 0.97 [95% CI, 0.95-0.98] per year) compared with patients who were colonized with a healthcare-associated (HA)-MRSA genotype.Conclusion.CA-MRSA genotypes have emerged as a cause of MRSA nares colonization among patients admitted to adult ICUs in the United States. During the study period (2006), the predominant site of CA-MRSA genotype acquisition appeared to be in the community.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Anabela Sousa Oliveira ◽  
Dumitru Licsandru ◽  
Rica Boscencu ◽  
Radu Socoteanu ◽  
Veronica Nacea ◽  
...  

This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHO), 5-(3-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHM), 5-(4-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHP), 5-(2-hydroxyphenyl)-10,15,20-tris-butyl-21,23-H-porphyrin (TBPOHO), and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP) and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP). Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrin's photophysical properties, especially porthyrin's efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene (ΦΔ(TPP) = 0.66 ± 0.05;ΦΔ(TPPOHO) = 0.69 ± 0.04;ΦΔ(TPPOHM) = 0.62 ± 0.04;ΦΔ(TPPOHP) = 0.73 ± 0.03;ΦΔ(TBP) = 0.76 ± 0.03;ΦΔ(TBPOHO) = 0.73 ± 0.02) using the 5,10,15,20-tetraphenyl-21,23-H-porphine (ΦΔ(TPP) = 0.66) and Phenazine (ΦΔ(Phz) = 0.83) as reference compounds. Their fluorescence quantum yields were found to be (Φf(TPPOHO) = 0.10 ± 0.04;Φf(TPPOHM) = 0.09 ± 0.03;Φf(TPPOHP) = 0.13 ± 0.02;Φf(TBP) = 0.08 ± 0.03 andΦf(TBPOHO) = 0.08 ± 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as referenceΦf(TPP) = 0.13). Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values ofτS(withO2, air equilibrated) = 9.6 ± 0.3 nanoseconds and (withoutO2, argon purged) = 10.1 ± 0.6 nanoseconds, resp.). The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.


Sign in / Sign up

Export Citation Format

Share Document